Effect of different device parameters on tin-based perovskite solar cell coupled with In2S3 electron transport layer and CuSCN and Spiro-OMeTAD alternative hole transport layers for high-efficiency performance

Intekhab Alam, Md Ali Ashraf
{"title":"Effect of different device parameters on tin-based perovskite solar cell coupled with In2S3 electron transport layer and CuSCN and Spiro-OMeTAD alternative hole transport layers for high-efficiency performance","authors":"Intekhab Alam, Md Ali Ashraf","doi":"10.1080/15567036.2020.1820628","DOIUrl":null,"url":null,"abstract":"SCAPS 1-D was used for the simulation of lead-free environmentally benign methylammonium tin-iodide (CH3NH3SnI3) based solar cell. Indium sulphide (In2S3) was utilized as the electron transport layer (ETL) for its high carrier mobility and optimized band structure, unlike traditional titanium oxide (TiO2) ETL. Traditional expensive spiro-OMeTAD (C81H68N4O8) and cheaper cuprous thiocyanate (CuSCN) were utilized alternatively as hole transport layer (HTL) to observe the effect of different HTL on cell performance. We investigated the trend in electrical measurements by altering parameters such as thickness, defect density, valence band (VB) effective density of state and bandgap of the absorber layer, interfacial trap densities and defect density of ETL. At optimum condition, the device revealed the highest efficiency of 18.45% for CuSCN (HTL) and 19.32% for spiro-OMeTAD (HTL) configuration. The effect of working temperature, the wavelength of light and band-to-band radiative recombination rate was also observed for both configurations. All these simulation results will help to fabricate eco-friendly high-efficiency perovskite solar cell by replacing the commonly used toxic lead-based perovskite.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15567036.2020.1820628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

SCAPS 1-D was used for the simulation of lead-free environmentally benign methylammonium tin-iodide (CH3NH3SnI3) based solar cell. Indium sulphide (In2S3) was utilized as the electron transport layer (ETL) for its high carrier mobility and optimized band structure, unlike traditional titanium oxide (TiO2) ETL. Traditional expensive spiro-OMeTAD (C81H68N4O8) and cheaper cuprous thiocyanate (CuSCN) were utilized alternatively as hole transport layer (HTL) to observe the effect of different HTL on cell performance. We investigated the trend in electrical measurements by altering parameters such as thickness, defect density, valence band (VB) effective density of state and bandgap of the absorber layer, interfacial trap densities and defect density of ETL. At optimum condition, the device revealed the highest efficiency of 18.45% for CuSCN (HTL) and 19.32% for spiro-OMeTAD (HTL) configuration. The effect of working temperature, the wavelength of light and band-to-band radiative recombination rate was also observed for both configurations. All these simulation results will help to fabricate eco-friendly high-efficiency perovskite solar cell by replacing the commonly used toxic lead-based perovskite.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同器件参数对锡基钙钛矿太阳能电池耦合In2S3电子传输层和CuSCN和Spiro-OMeTAD替代空穴传输层的高效性能的影响
利用SCAPS 1-D对无铅环境友好型碘化锡甲基铵(CH3NH3SnI3)基太阳能电池进行了模拟。与传统的氧化钛(TiO2) ETL不同,利用硫化铟(In2S3)作为电子传输层(ETL)具有较高的载流子迁移率和优化的能带结构。采用传统昂贵的螺旋- ometad (C81H68N4O8)和廉价的硫氰酸亚铜(CuSCN)交替作为空穴传输层(HTL),观察不同HTL对电池性能的影响。我们通过改变ETL的厚度、缺陷密度、吸收层的价带(VB)有效态密度和带隙、界面阱密度和缺陷密度等参数来研究电测量的趋势。在最佳条件下,CuSCN (HTL)和spiro-OMeTAD (HTL)的效率最高,分别为18.45%和19.32%。研究了工作温度、光波长和波段间辐射复合率对两种构型的影响。这些模拟结果将有助于替代常用的有毒铅基钙钛矿,制造环保高效的钙钛矿太阳能电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A pathway towards high throughput Quantum Monte Carlo simulations for alloys: A case study of two-dimensional (2D) GaSₓSe₁₋ₓ Data analytics accelerates the experimental discovery of new thermoelectric materials with extremely high figure of merit Thermal laser evaporation of elements from across the periodic table Perpendicular magnetic anisotropy in ultra-thin Cu2Sb-type (Mn–Cr)AlGe films fabricated onto thermally oxidized silicon substrates The Mesoscale Crystallinity of Nacreous Pearls
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1