Adaptive Beamforming Based on Interference Covariance Matrix Estimation

Yujie Gu, Yimin D. Zhang
{"title":"Adaptive Beamforming Based on Interference Covariance Matrix Estimation","authors":"Yujie Gu, Yimin D. Zhang","doi":"10.1109/IEEECONF44664.2019.9048699","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust adaptive beam-forming algorithm, where the interference-plus-noise covariance matrix is estimated by identifying and removing the desired signal component from the sample covariance matrix. For this purpose, we construct a desired signal subspace and its orthogonal subspace to identify the eigenvector of the sample covariance matrix corresponding to the desired signal. The adaptive beam-former is then designed using the estimated interference-plus-noise covariance matrix and the identified signal eigenvector. Because both are independent of the knowledge of the array geometry, the proposed adaptive beamformer is robust to array model mismatch. Simulation results demonstrate the effectiveness of the proposed robust adaptive beamforming algorithm.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"17 1","pages":"619-623"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we propose a robust adaptive beam-forming algorithm, where the interference-plus-noise covariance matrix is estimated by identifying and removing the desired signal component from the sample covariance matrix. For this purpose, we construct a desired signal subspace and its orthogonal subspace to identify the eigenvector of the sample covariance matrix corresponding to the desired signal. The adaptive beam-former is then designed using the estimated interference-plus-noise covariance matrix and the identified signal eigenvector. Because both are independent of the knowledge of the array geometry, the proposed adaptive beamformer is robust to array model mismatch. Simulation results demonstrate the effectiveness of the proposed robust adaptive beamforming algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于干扰协方差矩阵估计的自适应波束形成
在本文中,我们提出了一种鲁棒自适应波束形成算法,该算法通过从样本协方差矩阵中识别和去除所需的信号分量来估计干扰加噪声协方差矩阵。为此,我们构造了一个期望信号子空间及其正交子空间来识别与期望信号对应的样本协方差矩阵的特征向量。然后利用估计的干扰加噪声协方差矩阵和识别的信号特征向量设计自适应波束形成器。由于这两种波束形成器都不依赖于阵列的几何知识,因此所提出的自适应波束形成器对阵列模型失配具有较强的鲁棒性。仿真结果验证了所提鲁棒自适应波束形成算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised learning by a "softened" correlation game: duality and convergence Radar Beampattern Design for a Drone Swarm A Statistical Approach to Dynamic Synchrony Analysis of Neuronal Ensemble Spiking [Copyright notice] Phase Transition Analysis for Covariance Based Massive Random Access with Massive MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1