Localized corrosion of steel in alkaline solution with low-level chloride and elevated sulfate concentrations

Samanbar Permeh, Kingsley Lau
{"title":"Localized corrosion of steel in alkaline solution with low-level chloride and elevated sulfate concentrations","authors":"Samanbar Permeh,&nbsp;Kingsley Lau","doi":"10.1016/j.cement.2022.100051","DOIUrl":null,"url":null,"abstract":"<div><p>Localized corrosion developed on post-tensioned steel strand in deficient grout, relating to elevated concentrations of sulfate ions. The deficient grout can also have low-level chloride ion concentrations below threshold values originating from the base materials. Open-circuit potential, linear polarization resistance (LPR), and electrochemical noise (EN) measurements were made on steel specimens exposed in saturated calcium hydroxide solution with 0.012 M Cl<sup>−</sup>, 0.04 M SO<sub>4</sub><sup>2−</sup>, or combined. Results showed that the combined presence of sulfates in low-level chloride alkaline solutions elevated the corrosion rate and the extent of corrosion pitting. The EN technique was shown to provide corrosion rate estimates consistent with LPR and was able to identify pitting characteristics. The outcomes of the research provides supporting evidence that analysis of deficient grout for chlorides alone may not capture the risk for corrosion and that corrosion associated with elevated sulfate concentrations can be exacerbated in presence of low-level chlorides.</p></div>","PeriodicalId":100225,"journal":{"name":"CEMENT","volume":"10 ","pages":"Article 100051"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666549222000305/pdfft?md5=135436ddccedc624152937ee90734355&pid=1-s2.0-S2666549222000305-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEMENT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666549222000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Localized corrosion developed on post-tensioned steel strand in deficient grout, relating to elevated concentrations of sulfate ions. The deficient grout can also have low-level chloride ion concentrations below threshold values originating from the base materials. Open-circuit potential, linear polarization resistance (LPR), and electrochemical noise (EN) measurements were made on steel specimens exposed in saturated calcium hydroxide solution with 0.012 M Cl, 0.04 M SO42−, or combined. Results showed that the combined presence of sulfates in low-level chloride alkaline solutions elevated the corrosion rate and the extent of corrosion pitting. The EN technique was shown to provide corrosion rate estimates consistent with LPR and was able to identify pitting characteristics. The outcomes of the research provides supporting evidence that analysis of deficient grout for chlorides alone may not capture the risk for corrosion and that corrosion associated with elevated sulfate concentrations can be exacerbated in presence of low-level chlorides.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钢在低氯化物和高硫酸盐浓度的碱性溶液中的局部腐蚀
在缺乏灌浆的后张紧钢绞线上发生局部腐蚀,与硫酸盐离子浓度升高有关。缺乏的浆液也可能具有低氯离子浓度,低于源自基材的阈值。在含0.012 M Cl−、0.04 M SO42−或两者混合的饱和氢氧化钙溶液中,对钢试样进行了开路电位、线性极化电阻(LPR)和电化学噪声(EN)测量。结果表明,硫酸盐在低氯碱性溶液中的联合存在提高了腐蚀速率和腐蚀点的程度。结果表明,EN技术能够提供与LPR一致的腐蚀速率估计,并能够识别点蚀特征。研究结果提供了支持性证据,表明仅分析氯化物含量不足的灌浆可能无法捕获腐蚀风险,并且在低氯化物存在时,与硫酸盐浓度升高相关的腐蚀可能会加剧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Co-calcination to produce a synergistic blend of bauxite residue and low-grade kaolinitic clay for use as a supplementary cementitious material Downstream processing of End-of-Life concrete for the recovery of high-quality cementitious fractions The impact of relative humidity on the nanoindentation relaxation in calcium silicate hydrates Low-grade fly ash in portland cement blends: A decoupling approach to evaluate reactivity and hydration effects Accelerating effect of low replacements of carbonaceous materials in cement paste and mortar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1