SocialOcean: Visual Analysis and Characterization of Social Media Bubbles

A. Diehl, Michael Hundt, Johannes Häussler, Daniel Seebacher, Siming Chen, Nida Cilasun, D. Keim, T. Schreck
{"title":"SocialOcean: Visual Analysis and Characterization of Social Media Bubbles","authors":"A. Diehl, Michael Hundt, Johannes Häussler, Daniel Seebacher, Siming Chen, Nida Cilasun, D. Keim, T. Schreck","doi":"10.1109/BDVA.2018.8534023","DOIUrl":null,"url":null,"abstract":"Social media allows citizens, corporations, and authorities to create, post, and exchange information. The study of its dynamics will enable analysts to understand user activities and social group characteristics such as connectedness, geospatial distribution, and temporal behavior. In this context, social media bubbles can be defined as social groups that exhibit certain biases in social media. These biases strongly depend on the dimensions selected in the analysis, for example, topic affinity, credibility, sentiment, and geographic distribution. In this paper, we present SocialOcean, a visual analytics system that allows for the investigation of social media bubbles. There exists a large body of research in social sciences which identifies important dimensions of social media bubbles (SMBs). While such dimensions have been studied separately, and also some of them in combination, it is still an open question which dimensions play the most important role in defining SMBs. Since the concept of SMBs is fairly recent, there are many unknowns regarding their characterization. We investigate the thematic and spatiotemporal characteristics of SMBs and present a visual analytics system to address questions such as: What are the most important dimensions that characterize SMBs? and How SMBs embody in the presence of specific events that resonate with them? We illustrate our approach using three different real scenarios related to the single event of Boston Marathon Bombing, and political news about Global Warming. We perform an expert evaluation, analyze the experts' feedback, and present the lessons learned.","PeriodicalId":92742,"journal":{"name":"2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA) : Konstanz, Germany, October 17 -19, 2018. IEEE International Symposium on Big Data Visual and Immersive Analytics (4th : 2018 : Konstanz, Germany)","volume":"18 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA) : Konstanz, Germany, October 17 -19, 2018. IEEE International Symposium on Big Data Visual and Immersive Analytics (4th : 2018 : Konstanz, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BDVA.2018.8534023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Social media allows citizens, corporations, and authorities to create, post, and exchange information. The study of its dynamics will enable analysts to understand user activities and social group characteristics such as connectedness, geospatial distribution, and temporal behavior. In this context, social media bubbles can be defined as social groups that exhibit certain biases in social media. These biases strongly depend on the dimensions selected in the analysis, for example, topic affinity, credibility, sentiment, and geographic distribution. In this paper, we present SocialOcean, a visual analytics system that allows for the investigation of social media bubbles. There exists a large body of research in social sciences which identifies important dimensions of social media bubbles (SMBs). While such dimensions have been studied separately, and also some of them in combination, it is still an open question which dimensions play the most important role in defining SMBs. Since the concept of SMBs is fairly recent, there are many unknowns regarding their characterization. We investigate the thematic and spatiotemporal characteristics of SMBs and present a visual analytics system to address questions such as: What are the most important dimensions that characterize SMBs? and How SMBs embody in the presence of specific events that resonate with them? We illustrate our approach using three different real scenarios related to the single event of Boston Marathon Bombing, and political news about Global Warming. We perform an expert evaluation, analyze the experts' feedback, and present the lessons learned.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SocialOcean:社交媒体泡沫的视觉分析和特征
社交媒体允许公民、企业和当局创建、发布和交换信息。对其动态的研究将使分析人员能够了解用户活动和社会群体特征,如连通性、地理空间分布和时间行为。在这种情况下,社交媒体泡沫可以被定义为在社交媒体上表现出某种偏见的社会群体。这些偏差很大程度上取决于分析中选择的维度,例如,主题亲和力、可信度、情感和地理分布。在本文中,我们介绍了SocialOcean,这是一个可视化分析系统,可以对社交媒体泡沫进行调查。社会科学领域有大量的研究确定了社交媒体泡沫的重要维度。虽然这些方面已经分别研究过,有些方面也结合研究过,但哪些方面在界定中小企业方面发挥了最重要的作用仍然是一个悬而未决的问题。由于smb的概念是最近才出现的,因此关于它们的特征有许多未知的东西。我们研究了中小企业的主题和时空特征,并提出了一个可视化分析系统来解决以下问题:什么是中小企业最重要的特征维度?以及中小企业如何在与他们产生共鸣的特定事件中体现出来?我们用与波士顿马拉松爆炸事件和全球变暖的政治新闻有关的三个不同的真实场景来说明我们的方法。我们进行专家评估,分析专家的反馈,并提出经验教训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Immersive Analytics Multisensory Immersive Analytics Immersive Analytics Applications in Life and Health Sciences Immersive Analytics: An Introduction Immersive Human-Centered Computational Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1