In-situ ultrasonic surface wave assessment of mechanical fatigue damage accumulation in metal matrix composites

Patrick T. MacLellan, David A. Stubbs, Prasanna Karpur
{"title":"In-situ ultrasonic surface wave assessment of mechanical fatigue damage accumulation in metal matrix composites","authors":"Patrick T. MacLellan,&nbsp;David A. Stubbs,&nbsp;Prasanna Karpur","doi":"10.1016/0961-9526(95)00082-X","DOIUrl":null,"url":null,"abstract":"<div><p>This study demonstrates that an <em>in-situ</em> nondestructive, ultrasonic surface wave technique can successfully detect the onset and extent of matrix cracking fatigue damage in a titanium metal matrix composite (MMC). A quasi-isotropic [0/±45/90]<sub>s</sub>SCS-6/Timetal® 21S MMC material was used for room temperature fatigue tests and the resultant matrix cracking damage was ultrasonically monitored <em>in situ</em> as a function of cycle count. Damage accumulation in the material was successfully correlated with decreases in ultrasonic pitch catch amplitude and verified through the use of immersion ultrasonic C-scans and metallographic techniques. Damage initiation and progression was tracked through the use of complementary nondestructive and destructive techniques. The <em>in-situ</em> surface wave data show that the higher the fatigue stress level, the more quickly damage occurs; conversely, the lower the stress level, the slower the damage initiation. The <em>in-situ</em> surface wave technique proved to be more sensitive to the accumulating damage than standard load-displacement modulus measurements. The surface wave technique also indicated a change in material properties after only one fatigue cycle. The data acquired show that a better understanding of damage initiation and accumulation can be gained using the <em>in-situ</em> surface wave technique in comparison to current load-displacement modulus measurements.</p></div>","PeriodicalId":100298,"journal":{"name":"Composites Engineering","volume":"5 12","pages":"Pages 1413-1422"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0961-9526(95)00082-X","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/096195269500082X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study demonstrates that an in-situ nondestructive, ultrasonic surface wave technique can successfully detect the onset and extent of matrix cracking fatigue damage in a titanium metal matrix composite (MMC). A quasi-isotropic [0/±45/90]sSCS-6/Timetal® 21S MMC material was used for room temperature fatigue tests and the resultant matrix cracking damage was ultrasonically monitored in situ as a function of cycle count. Damage accumulation in the material was successfully correlated with decreases in ultrasonic pitch catch amplitude and verified through the use of immersion ultrasonic C-scans and metallographic techniques. Damage initiation and progression was tracked through the use of complementary nondestructive and destructive techniques. The in-situ surface wave data show that the higher the fatigue stress level, the more quickly damage occurs; conversely, the lower the stress level, the slower the damage initiation. The in-situ surface wave technique proved to be more sensitive to the accumulating damage than standard load-displacement modulus measurements. The surface wave technique also indicated a change in material properties after only one fatigue cycle. The data acquired show that a better understanding of damage initiation and accumulation can be gained using the in-situ surface wave technique in comparison to current load-displacement modulus measurements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属基复合材料机械疲劳损伤累积的原位超声表面波评价
研究表明,原位无损超声表面波技术可以成功地检测钛金属基复合材料(MMC)基体裂纹疲劳损伤的发生和程度。采用准各向同性[0/±45/90]的sSCS-6/Timetal®21S MMC材料进行室温疲劳试验,并原位超声监测由此产生的基体开裂损伤与循环次数的关系。材料中的损伤积累成功地与超声俯仰捕获振幅的减小相关联,并通过使用浸入式超声c扫描和金相技术进行了验证。通过使用互补的非破坏性和破坏性技术来跟踪损伤的发生和进展。现场表面波数据表明,疲劳应力水平越高,损伤发生越快;反之,应力水平越低,损伤起裂越慢。事实证明,原位表面波技术比标准荷载-位移模量测量对累积损伤更敏感。表面波技术也表明,仅在一个疲劳循环后,材料性能就发生了变化。获得的数据表明,与当前的载荷-位移模量测量相比,使用原位表面波技术可以更好地理解损伤的发生和积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Announcement Editorial Board Announcement Announcement Foreword
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1