InSyBio BioNets: an efficient tool for network-based biomarker discovery

K. Theofilatos, Christos M. Dimitrakopoulos, Christos E. Alexakos, A. Korfiati, S. Likothanassis, S. Mavroudi
{"title":"InSyBio BioNets: an efficient tool for network-based biomarker discovery","authors":"K. Theofilatos, Christos M. Dimitrakopoulos, Christos E. Alexakos, A. Korfiati, S. Likothanassis, S. Mavroudi","doi":"10.14806/EJ.22.0.871","DOIUrl":null,"url":null,"abstract":"Biological networks have been widely used in systems biology in order to model the complex interactions of molecular players such as proteins, genes, mRNAs, non-coding RNAs and others. However, most of the current methods for biomarker discovery do not use biological networks, but just deploy simple statistical methods to identify differentially expressed genes and gene products. In the present paper, we present InSyBio BioNets, which is a cloud-based web platform offering a unique biomarker discovery pipeline, which combines differential expression analysis and a method for comparing biological networks to identify biomarkers efficiently. As a case study, InSyBio BioNets was applied to a Parkinson dataset of gene expression measurements and outperformed a standard statistical approach by recovering a more compact and informative set of biomarkers.","PeriodicalId":72893,"journal":{"name":"EMBnet.journal","volume":"178 1","pages":"871"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBnet.journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14806/EJ.22.0.871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Biological networks have been widely used in systems biology in order to model the complex interactions of molecular players such as proteins, genes, mRNAs, non-coding RNAs and others. However, most of the current methods for biomarker discovery do not use biological networks, but just deploy simple statistical methods to identify differentially expressed genes and gene products. In the present paper, we present InSyBio BioNets, which is a cloud-based web platform offering a unique biomarker discovery pipeline, which combines differential expression analysis and a method for comparing biological networks to identify biomarkers efficiently. As a case study, InSyBio BioNets was applied to a Parkinson dataset of gene expression measurements and outperformed a standard statistical approach by recovering a more compact and informative set of biomarkers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InSyBio bioonets:基于网络的生物标志物发现的有效工具
生物网络已广泛应用于系统生物学,以模拟分子参与者,如蛋白质,基因,mrna,非编码rna等的复杂相互作用。然而,目前大多数生物标志物的发现方法都没有使用生物网络,而只是使用简单的统计方法来识别差异表达基因和基因产物。在本文中,我们介绍了InSyBio BioNets,这是一个基于云的网络平台,提供独特的生物标志物发现管道,它结合了差异表达分析和比较生物网络的方法来有效地识别生物标志物。作为案例研究,InSyBio BioNets应用于帕金森基因表达测量数据集,通过恢复更紧凑和信息丰富的生物标志物集,优于标准统计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Milk exosomes and a new way of communication between mother and child Exosomal Epigenetics Fingerprinting Breast Milk; insights into Milk Exosomics Ds-Seq: An Integrated Pipeline for In Silico Small RNA Se-quence Analysis for Host-pathogen Interaction Studies The Intersection of Artificial Intelligence and Precision Endocrinology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1