Enhancing Social Media Analysis with Visual Data Analytics: A Deep Learning Approach

MIS Q. Pub Date : 2020-10-12 DOI:10.2139/SSRN.2830377
D. Shin, Shu He, G. Lee, Andrew Whinston, Suleyman Cetintas, Kuang-chih Lee
{"title":"Enhancing Social Media Analysis with Visual Data Analytics: A Deep Learning Approach","authors":"D. Shin, Shu He, G. Lee, Andrew Whinston, Suleyman Cetintas, Kuang-chih Lee","doi":"10.2139/SSRN.2830377","DOIUrl":null,"url":null,"abstract":"In the present study, we investigate the effect of social media content on subsequent customer engagement (likes and reblogs) using a large-scale dataset from Tumblr. Our study focuses on company-generated posts, which consist of two main information sources: visual (images) and textual (text and tags). We employ state-of-the-art machine learning approaches including deep learning to extract data-driven features from both sources that effectively capture their semantics in a systematic and scaleable manner. With such semantic representations, we develop novel complexity, similarity, and consistency measures of social media content. Our empirical results show that proper visual stimuli (e.g., beautiful images, adult-content, celebrities, etc.), complementary textual content, and consistent themes have positive effects on the engagement, and that content demanding significant concentration levels (e.g., video, images with complex semantics, text with diverse topics, complex sentences, etc.) have the opposite effects. Further analyses at different perspectives (industry-level, hedonic/utilitarian products, followers/non-followers, short/long-term engagements) show the heterogeneous effects of visual and textual features. This work contributes to the literature by exemplifying how unstructured multimedia data (image, video, and audio) can be translated into insights. Our framework for semantic content analysis, particularly for visual content, illustrates how to leverage deep learning methods to better model and analyze multimedia data for effective marketing and social media strategies.","PeriodicalId":18743,"journal":{"name":"MIS Q.","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MIS Q.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.2830377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the present study, we investigate the effect of social media content on subsequent customer engagement (likes and reblogs) using a large-scale dataset from Tumblr. Our study focuses on company-generated posts, which consist of two main information sources: visual (images) and textual (text and tags). We employ state-of-the-art machine learning approaches including deep learning to extract data-driven features from both sources that effectively capture their semantics in a systematic and scaleable manner. With such semantic representations, we develop novel complexity, similarity, and consistency measures of social media content. Our empirical results show that proper visual stimuli (e.g., beautiful images, adult-content, celebrities, etc.), complementary textual content, and consistent themes have positive effects on the engagement, and that content demanding significant concentration levels (e.g., video, images with complex semantics, text with diverse topics, complex sentences, etc.) have the opposite effects. Further analyses at different perspectives (industry-level, hedonic/utilitarian products, followers/non-followers, short/long-term engagements) show the heterogeneous effects of visual and textual features. This work contributes to the literature by exemplifying how unstructured multimedia data (image, video, and audio) can be translated into insights. Our framework for semantic content analysis, particularly for visual content, illustrates how to leverage deep learning methods to better model and analyze multimedia data for effective marketing and social media strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用视觉数据分析增强社交媒体分析:一种深度学习方法
在本研究中,我们使用来自Tumblr的大规模数据集调查社交媒体内容对后续客户参与(喜欢和转发)的影响。我们的研究重点是公司生成的帖子,它由两个主要信息源组成:视觉(图像)和文本(文本和标签)。我们采用最先进的机器学习方法,包括深度学习,从两个来源中提取数据驱动的特征,以系统和可扩展的方式有效捕获其语义。通过这种语义表示,我们开发了新的社交媒体内容的复杂性、相似性和一致性度量。我们的实证结果表明,适当的视觉刺激(如美丽的图像、成人内容、名人等)、互补的文本内容和一致的主题对参与度有积极影响,而要求高度集中的内容(如视频、语义复杂的图像、主题多样的文本、复杂的句子等)具有相反的效果。从不同角度(行业层面、享乐/实用产品、追随者/非追随者、短期/长期参与)进一步分析显示,视觉和文本特征的影响是不同的。这项工作通过举例说明如何将非结构化多媒体数据(图像、视频和音频)转化为见解,为文献做出了贡献。我们的语义内容分析框架,特别是视觉内容,说明了如何利用深度学习方法更好地建模和分析多媒体数据,以实现有效的营销和社交媒体策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unintended Emotional Effects of Online Health Communities: A Text Mining-Supported Empirical Study Understanding the Digital Resilience of Physicians during the COVID-19 Pandemic: An Empirical Study Putting Religious Bias in Context: How Offline and Online Contexts Shape Religious Bias in Online Prosocial Lending Exploiting Expert Knowledge for Assigning Firms to Industries: A Novel Deep Learning Method Attaining Individual Creativity and Performance in Multidisciplinary and Geographically Distributed IT Project Teams: The Role of Transactive Memory Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1