Resource-friendly carbon fiber composites: combining production waste with virgin feedstock

IF 1.8 Q3 ENGINEERING, MANUFACTURING Advanced Manufacturing: Polymer & Composites Science Pub Date : 2017-09-26 DOI:10.1080/20550340.2017.1379257
J. Kratz, Y. S. Low, B. Fox
{"title":"Resource-friendly carbon fiber composites: combining production waste with virgin feedstock","authors":"J. Kratz, Y. S. Low, B. Fox","doi":"10.1080/20550340.2017.1379257","DOIUrl":null,"url":null,"abstract":"Abstract Reclaimed carbon fiber materials were studied in this paper with the aim of improving virgin fiber feedstock usage. Both processing and mechanical properties were investigated. The compaction response showed lower fiber volume fractions in reclaimed fiber materials than the virgin continuous reinforcement from which it was reclaimed. In addition, localized high-strain regions were observed during consolidation of the dry fiber and mechanical loading of cured laminates. These vulnerable failure points were mitigated by incorporating virgin continuous fiber feedstock into the laminate. A knock-down in mechanical properties was observed, however classical laminated plate theory identified a planar stiffness drop of 3.5 GPa for every 10% increase in reclaimed carbon fiber content in a continuous fiber laminate. Increased feedstock usage by combining both virgin and reclaimed carbon fibers was shown to be viable option to implement more resource efficient, but heavier, composite structures. Graphical abstract","PeriodicalId":7243,"journal":{"name":"Advanced Manufacturing: Polymer & Composites Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Manufacturing: Polymer & Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20550340.2017.1379257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 10

Abstract

Abstract Reclaimed carbon fiber materials were studied in this paper with the aim of improving virgin fiber feedstock usage. Both processing and mechanical properties were investigated. The compaction response showed lower fiber volume fractions in reclaimed fiber materials than the virgin continuous reinforcement from which it was reclaimed. In addition, localized high-strain regions were observed during consolidation of the dry fiber and mechanical loading of cured laminates. These vulnerable failure points were mitigated by incorporating virgin continuous fiber feedstock into the laminate. A knock-down in mechanical properties was observed, however classical laminated plate theory identified a planar stiffness drop of 3.5 GPa for every 10% increase in reclaimed carbon fiber content in a continuous fiber laminate. Increased feedstock usage by combining both virgin and reclaimed carbon fibers was shown to be viable option to implement more resource efficient, but heavier, composite structures. Graphical abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
资源友好型碳纤维复合材料:将生产废料与原始原料相结合
摘要以提高原纤维原料利用率为目的,对再生碳纤维材料进行了研究。对其加工性能和力学性能进行了研究。压缩响应表明,再生纤维材料的纤维体积分数低于再生纤维的原始连续增强材料。此外,在干纤维固结和固化层板的力学加载过程中,观察到局部高应变区。通过将原始连续纤维原料掺入层压板中,这些脆弱的故障点得到了缓解。然而,经典的层合板理论认为,在连续纤维层合板中,每增加10%的再生碳纤维含量,平面刚度就会下降3.5 GPa。通过结合原生和再生碳纤维来增加原料的使用被证明是实现资源效率更高,但更重的复合结构的可行选择。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
11
审稿时长
16 weeks
期刊最新文献
Mitigating void growth in out-of-autoclave prepreg processing using a semi-permeable membrane to maintain resin pressure Analysis and development of a brazing method to weld carbon fiber-reinforced poly ether ketone ketone with amorphous PEKK In-situ analysis of cocured scarf patch repairs Bending properties of structural foams manufactured in a hot press process Experimental validation of co-cure process of honeycomb sandwich structures simulation: adhesive fillet shape and bond-line porosity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1