Modeling neurodegenerative diseases using non-human primates: advances and challenges

Bang Li, Dansha He, Xiao-Jiang Li, Xiangrong Guo
{"title":"Modeling neurodegenerative diseases using non-human primates: advances and challenges","authors":"Bang Li, Dansha He, Xiao-Jiang Li, Xiangrong Guo","doi":"10.20517/and.2022.14","DOIUrl":null,"url":null,"abstract":"Neurodegenerative diseases (NDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are pathologically characterized by progressive loss of selective populations of neurons in the affected brain regions and clinically manifested by cognitive, motor, and psychological dysfunctions. Since aging is the major risk factor for NDs and the elderly population is expected to expand considerably in the coming decades, the prevalence of NDs will significantly increase, leading to a greater medical burden to society and affected families. Despite extensive research on NDs, no effective therapy is available for NDs, largely due to a lack of complete understanding of the pathogenesis of NDs. Although research on small animal and rodent models has provided tremendous knowledge of molecular mechanisms of disease pathogenesis, few translational successes have been reported in clinical trials. In particular, most genetically modified rodent models are unable to recapitulate striking and overt neurodegeneration seen in the patient brains. Non-human primates (NHPs) are the most relevant laboratory animals to humans, and recent studies using NHP neurodegeneration models have uncovered important pathological features of NDs. Here, we review the unique features of NHPs for modeling NDs and new insights into AD, PD, and ALS gained from animal models, highlight the contribution of gene editing techniques to establishing NHP models, and discuss the challenges of investigating NHP models.","PeriodicalId":93251,"journal":{"name":"Ageing and neurodegenerative diseases","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing and neurodegenerative diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/and.2022.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Neurodegenerative diseases (NDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS), are pathologically characterized by progressive loss of selective populations of neurons in the affected brain regions and clinically manifested by cognitive, motor, and psychological dysfunctions. Since aging is the major risk factor for NDs and the elderly population is expected to expand considerably in the coming decades, the prevalence of NDs will significantly increase, leading to a greater medical burden to society and affected families. Despite extensive research on NDs, no effective therapy is available for NDs, largely due to a lack of complete understanding of the pathogenesis of NDs. Although research on small animal and rodent models has provided tremendous knowledge of molecular mechanisms of disease pathogenesis, few translational successes have been reported in clinical trials. In particular, most genetically modified rodent models are unable to recapitulate striking and overt neurodegeneration seen in the patient brains. Non-human primates (NHPs) are the most relevant laboratory animals to humans, and recent studies using NHP neurodegeneration models have uncovered important pathological features of NDs. Here, we review the unique features of NHPs for modeling NDs and new insights into AD, PD, and ALS gained from animal models, highlight the contribution of gene editing techniques to establishing NHP models, and discuss the challenges of investigating NHP models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用非人类灵长类动物模拟神经退行性疾病:进展和挑战
神经退行性疾病(NDs),如阿尔茨海默病(AD)、帕金森病(PD)、亨廷顿病(HD)和肌萎缩侧索硬化症(ALS),其病理特征是受影响脑区域选择性神经元群的进行性丧失,临床表现为认知、运动和心理功能障碍。由于老龄化是NDs的主要危险因素,预计未来几十年老年人口将大幅增加,NDs的患病率将显著增加,从而给社会和受影响家庭带来更大的医疗负担。尽管对非传染性疾病进行了广泛的研究,但由于对非传染性疾病的发病机制缺乏全面的了解,目前尚无有效的治疗方法。尽管对小动物和啮齿动物模型的研究提供了大量关于疾病发病机制的分子机制,但在临床试验中很少有转化成功的报道。特别是,大多数转基因啮齿动物模型无法重现患者大脑中明显的神经变性。非人灵长类动物(NHP)是与人类最相关的实验动物,最近使用NHP神经变性模型的研究揭示了NDs的重要病理特征。在这里,我们回顾了NHPs在NDs建模中的独特特征,以及从动物模型中获得的对AD、PD和ALS的新见解,强调了基因编辑技术对建立NHP模型的贡献,并讨论了研究NHP模型的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advantages and differences among various animal models of Huntington’s disease Age-related energetic reprogramming in glial cells: possible correlations with Parkinson’s disease Fibril-forming motif of non-expanded ataxin-3 revealed by scanning proline mutagenesis Automatically targeting the dorsolateral subthalamic nucleus for functional connectivity-guided rTMS therapy Re-energising the brain: glucose metabolism, Tau protein and memory in ageing and dementia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1