Hybrid RRT-A*: An Improved Path Planning Method for an Autonomous Mobile Robots

Suhaib Al-Ansarry, Salah Al-Darraji
{"title":"Hybrid RRT-A*: An Improved Path Planning Method for an Autonomous Mobile Robots","authors":"Suhaib Al-Ansarry, Salah Al-Darraji","doi":"10.37917/IJEEE.17.1.13","DOIUrl":null,"url":null,"abstract":"Although the Basic RRT algorithm is considered a traditional search method, it has been widely used in the field of robot path planning (manipulator and mobile robot), especially in the past decade. This algorithm has many features that give it superiority over other methods. On the other hand, the Basic RRT suffers from a bad convergence rate (it takes a long time until finding the goal point), especially in environments with cluttered obstacles, or whose targets are located in narrow passages. Many studies have discussed this problem in recent years. This paper introduces an improved method called (Hybrid RRT-A*) to overcome the shortcomings of the original RRT, specifically slow convergence and cost rate. The heuristic function of A-star algorithm is combined with RRT to decrease tree expansion and guide it towards the goal with less nodes and time. Various experiments have been conducted with different environment scenarios to compare the proposed method with the Basic RRT and A-star under the same conditions, which have shown remarkable performance. The time consumed to find the path of the worst one of these scenarios is about 4.9 seconds, whereas it is 18.3 and 34 for A-star and RRT, respectively.","PeriodicalId":37533,"journal":{"name":"International Journal of Electrical and Electronic Engineering and Telecommunications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Electronic Engineering and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37917/IJEEE.17.1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 6

Abstract

Although the Basic RRT algorithm is considered a traditional search method, it has been widely used in the field of robot path planning (manipulator and mobile robot), especially in the past decade. This algorithm has many features that give it superiority over other methods. On the other hand, the Basic RRT suffers from a bad convergence rate (it takes a long time until finding the goal point), especially in environments with cluttered obstacles, or whose targets are located in narrow passages. Many studies have discussed this problem in recent years. This paper introduces an improved method called (Hybrid RRT-A*) to overcome the shortcomings of the original RRT, specifically slow convergence and cost rate. The heuristic function of A-star algorithm is combined with RRT to decrease tree expansion and guide it towards the goal with less nodes and time. Various experiments have been conducted with different environment scenarios to compare the proposed method with the Basic RRT and A-star under the same conditions, which have shown remarkable performance. The time consumed to find the path of the worst one of these scenarios is about 4.9 seconds, whereas it is 18.3 and 34 for A-star and RRT, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合RRT-A*:一种改进的自主移动机器人路径规划方法
虽然Basic RRT算法被认为是一种传统的搜索方法,但它在机器人路径规划(机械手和移动机器人)领域得到了广泛的应用,特别是在过去的十年中。该算法具有许多优于其他方法的特点。另一方面,基本RRT的收敛速度很差(需要很长时间才能找到目标点),特别是在障碍物杂乱的环境中,或者目标位于狭窄的通道中。近年来,许多研究都在讨论这个问题。本文提出了一种改进的RRT算法(Hybrid RRT- a *),克服了原有RRT算法收敛速度慢、成本率低等缺点。将A-star算法的启发式函数与RRT算法相结合,减小了树的展开,引导树以更少的节点和时间向目标移动。在不同的环境场景下进行了各种实验,将所提出的方法与相同条件下的Basic RRT和A-star进行了比较,显示出了显著的性能。找到最坏情况的路径所花费的时间约为4.9秒,而A-star和RRT分别为18.3秒和34秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
22
期刊介绍: International Journal of Electrical and Electronic Engineering & Telecommunications. IJEETC is a scholarly peer-reviewed international scientific journal published quarterly, focusing on theories, systems, methods, algorithms and applications in electrical and electronic engineering & telecommunications. It provide a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on Electrical and Electronic Engineering & Telecommunications. All papers will be blind reviewed and accepted papers will be published quarterly, which is available online (open access) and in printed version.
期刊最新文献
Implementation of Synchronous Bidirectional Converter Using a Fuzzy Logic Controller Performance Evaluation of a Modified ECG De-noising Technique Using Wavelet Decomposition and Threshold Method Modelling of Current Transport Mechanisms in GaSb-Rich Type-II Superlattice Infrared Photodiodes IOT Based Energy Meter with Billing System and Load Prioritization Dual Axis Solar Tracker with Weather Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1