A. Samad, Mamoona Qadir, Ishrat Nawaz, Muhammad Arshad Islam, Muhammad Aleem
{"title":"A Comprehensive Survey of Link Prediction Techniques for Social Network","authors":"A. Samad, Mamoona Qadir, Ishrat Nawaz, Muhammad Arshad Islam, Muhammad Aleem","doi":"10.4108/eai.13-7-2018.163988","DOIUrl":null,"url":null,"abstract":"A growing trend of using social networking sites is attracting researchers to study and analyze different aspects of social network. Besides many problems, link prediction is a fascinating problem in the field of social network analysis (SNA). Link prediction, in social network analysis, is a task of identifying the missing links and predicting the new links. Several researchers have proposed solutions for the link prediction problem during the past two decades. However, there is a need to provide comprehensive overview of the significant contributions for a thorough analysis. The objective of this review is to summaries and discuss the existing link prediction algorithms in a common context for an unbiased analysis. The extensive review is presented by constructing the systematical category for proposed algorithms, selected problems, evaluation measures along with selected network datasets. Finally, applications of link prediction are discussed.","PeriodicalId":33474,"journal":{"name":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","volume":"52 1","pages":"e3"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.13-7-2018.163988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 16
Abstract
A growing trend of using social networking sites is attracting researchers to study and analyze different aspects of social network. Besides many problems, link prediction is a fascinating problem in the field of social network analysis (SNA). Link prediction, in social network analysis, is a task of identifying the missing links and predicting the new links. Several researchers have proposed solutions for the link prediction problem during the past two decades. However, there is a need to provide comprehensive overview of the significant contributions for a thorough analysis. The objective of this review is to summaries and discuss the existing link prediction algorithms in a common context for an unbiased analysis. The extensive review is presented by constructing the systematical category for proposed algorithms, selected problems, evaluation measures along with selected network datasets. Finally, applications of link prediction are discussed.