Offset Optimization Model for Signalized Intersections Considering the Optimal Location Planning of Bus Stops

Wei Wu, Xiao-long Luo, Baiying Shi
{"title":"Offset Optimization Model for Signalized Intersections Considering the Optimal Location Planning of Bus Stops","authors":"Wei Wu, Xiao-long Luo, Baiying Shi","doi":"10.3390/systems11070366","DOIUrl":null,"url":null,"abstract":"Existing offset optimization methods for signalized intersections are mainly focused on regular traffic flow, which cannot accommodate cars and public transit (e.g., Bus Rapid Transit (BRT)) simultaneously. This study proposes a delay prediction model to formulate the signal delay of BRT at intersections. The relation among the green wave bandwidth, signal timing plans, speed of the BRT vehicles, distance between the intersections, and the offset is also modeled. A combinatorial optimization model is then established, which takes the location planning of BRT stops and the offset of intersections at both directions along the artery as the decision variables. The proposed model is programmed with Mathematical Programming Language (AMPL) and solved efficiently by the Gurobi solver. The proposed optimization method is compared with seven different methods. The results show that the average BRT travel time is reduced by at least 19% and the green wave bandwidth is increased by around 30.2%. The importance of considering location planning of BRT stops when optimizing the offset is thereby verified.","PeriodicalId":52858,"journal":{"name":"syst mt`lyh","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"syst mt`lyh","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/systems11070366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Existing offset optimization methods for signalized intersections are mainly focused on regular traffic flow, which cannot accommodate cars and public transit (e.g., Bus Rapid Transit (BRT)) simultaneously. This study proposes a delay prediction model to formulate the signal delay of BRT at intersections. The relation among the green wave bandwidth, signal timing plans, speed of the BRT vehicles, distance between the intersections, and the offset is also modeled. A combinatorial optimization model is then established, which takes the location planning of BRT stops and the offset of intersections at both directions along the artery as the decision variables. The proposed model is programmed with Mathematical Programming Language (AMPL) and solved efficiently by the Gurobi solver. The proposed optimization method is compared with seven different methods. The results show that the average BRT travel time is reduced by at least 19% and the green wave bandwidth is increased by around 30.2%. The importance of considering location planning of BRT stops when optimizing the offset is thereby verified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑公交车站最优选址规划的信号交叉口偏移优化模型
现有的信号交叉口偏移量优化方法主要针对常规交通流,无法同时容纳汽车和公共交通(如快速公交(BRT))。本研究提出一种延迟预测模型,用于制定快速公交在交叉口的信号延迟。建立了绿波带宽、信号配时方案、BRT车速、交叉口间距、偏移量之间的关系模型。建立了以BRT站点选址规划和主干道双向交叉口偏移量为决策变量的组合优化模型。该模型采用数学规划语言(AMPL)进行编程,并采用Gurobi求解器进行高效求解。并与7种不同的优化方法进行了比较。结果表明,BRT的平均行驶时间减少了至少19%,绿波带宽增加了约30.2%。从而验证了在优化偏移量时考虑BRT站点位置规划的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊最新文献
Optimal Government Subsidy Decision and Its Impact on Sustainable Development of a Closed-Loop Supply Chain An Emotional Design Model for Future Smart Product Based on Grounded Theory Evolution Mechanism of Public-Private Partnership Project Trust from the Perspective of the Supply Chain Derivation of Optimal Operation Factors of Anaerobic Digesters through Artificial Neural Network Technology An Industrial Case Study on the Monitoring and Maintenance Service System for a Robot-Driven Polishing Service System under Industry 4.0 Contexts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1