Forest-Genetic method to optimize parameter design of multiresponse experiment

IF 3.7 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence Pub Date : 2020-08-27 DOI:10.4114/INTARTIF.VOL23ISS66PP9-25
Adriana Villa-Murillo, A. Carrión, A. Sozzi
{"title":"Forest-Genetic method to optimize parameter design of multiresponse experiment","authors":"Adriana Villa-Murillo, A. Carrión, A. Sozzi","doi":"10.4114/INTARTIF.VOL23ISS66PP9-25","DOIUrl":null,"url":null,"abstract":"We propose a methodology for the improvement of the parameter design that consists of the combination ofRandom Forest (RF) with Genetic Algorithms (GA) in 3 phases: normalization, modelling and optimization.The rst phase corresponds to the previous preparation of the data set by using normalization functions. In thesecond phase, we designed a modelling scheme adjusted to multiple quality characteristics and we have called itMultivariate Random Forest (MRF) for the determination of the objective function. Finally, in the third phase,we obtained the optimal combination of parameter levels with the integration of properties of our modellingscheme and desirability functions in the establishment of the corresponding GA. Two illustrative cases allow us tocompare and validate the virtues of our methodology versus other proposals involving Arti cial Neural Networks(ANN) and Simulated Annealing (SA).","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":"49 1","pages":"9-25"},"PeriodicalIF":3.7000,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/INTARTIF.VOL23ISS66PP9-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a methodology for the improvement of the parameter design that consists of the combination ofRandom Forest (RF) with Genetic Algorithms (GA) in 3 phases: normalization, modelling and optimization.The rst phase corresponds to the previous preparation of the data set by using normalization functions. In thesecond phase, we designed a modelling scheme adjusted to multiple quality characteristics and we have called itMultivariate Random Forest (MRF) for the determination of the objective function. Finally, in the third phase,we obtained the optimal combination of parameter levels with the integration of properties of our modellingscheme and desirability functions in the establishment of the corresponding GA. Two illustrative cases allow us tocompare and validate the virtues of our methodology versus other proposals involving Arti cial Neural Networks(ANN) and Simulated Annealing (SA).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多响应试验参数优化设计的Forest-Genetic法
我们提出了一种改进参数设计的方法,该方法由随机森林(RF)与遗传算法(GA)的结合组成,分为规范化、建模和优化三个阶段。第一个阶段对应于使用归一化函数对数据集的先前准备。在第二阶段,我们设计了一个适应多种质量特征的建模方案,我们称之为多元随机森林(MRF)来确定目标函数。最后,在第三阶段,我们在建立相应的遗传算法时,结合建模方案的性质和期望函数,得到了参数层次的最优组合。两个说明案例使我们能够比较和验证我们的方法与其他涉及人工神经网络(ANN)和模拟退火(SA)的建议的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
15
审稿时长
8 weeks
期刊介绍: Inteligencia Artificial is a quarterly journal promoted and sponsored by the Spanish Association for Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. Particularly, the Journal welcomes: New approaches, techniques or methods to solve AI problems, which should include demonstrations of effectiveness oor improvement over existing methods. These demonstrations must be reproducible. Integration of different technologies or approaches to solve wide problems or belonging different areas. AI applications, which should describe in detail the problem or the scenario and the proposed solution, emphasizing its novelty and present a evaluation of the AI techniques that are applied. In addition to rapid publication and dissemination of unsolicited contributions, the journal is also committed to producing monographs, surveys or special issues on topics, methods or techniques of special relevance to the AI community. Inteligencia Artificial welcomes submissions written in English, Spaninsh or Portuguese. But at least, a title, summary and keywords in english should be included in each contribution.
期刊最新文献
Rumex Weed Classification Using Region-Convolution Neural Networks Based-Colour Space Information An Automatic Non-Destructive External and Internal Quality Evaluation of Mango Fruits based on Color and X-ray Imaging with Machine Learning and Deep Learning Based Classification Models An intelligent approach for anomaly detection in credit card data using bat optimization algorithm Fake News Detection in Low Resource Languages using SetFit Framework An Ensemble Classification Method Based on Deep Neural Networks for Breast Cancer Diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1