Estimating SARS-CoV-2 seroprevalence.

IF 1.5 3区 数学 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Journal of the Royal Statistical Society Series A-Statistics in Society Pub Date : 2023-05-19 eCollection Date: 2023-10-01 DOI:10.1093/jrsssa/qnad068
Samuel P Rosin, Bonnie E Shook-Sa, Stephen R Cole, Michael G Hudgens
{"title":"Estimating SARS-CoV-2 seroprevalence.","authors":"Samuel P Rosin, Bonnie E Shook-Sa, Stephen R Cole, Michael G Hudgens","doi":"10.1093/jrsssa/qnad068","DOIUrl":null,"url":null,"abstract":"<p><p>Governments and public health authorities use seroprevalence studies to guide responses to the COVID-19 pandemic. Seroprevalence surveys estimate the proportion of individuals who have detectable SARS-CoV-2 antibodies. However, serologic assays are prone to misclassification error, and non-probability sampling may induce selection bias. In this paper, non-parametric and parametric seroprevalence estimators are considered that address both challenges by leveraging validation data and assuming equal probabilities of sample inclusion within covariate-defined strata. Both estimators are shown to be consistent and asymptotically normal, and consistent variance estimators are derived. Simulation studies are presented comparing the estimators over a range of scenarios. The methods are used to estimate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence in New York City, Belgium, and North Carolina.</p>","PeriodicalId":49983,"journal":{"name":"Journal of the Royal Statistical Society Series A-Statistics in Society","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746549/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series A-Statistics in Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnad068","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Governments and public health authorities use seroprevalence studies to guide responses to the COVID-19 pandemic. Seroprevalence surveys estimate the proportion of individuals who have detectable SARS-CoV-2 antibodies. However, serologic assays are prone to misclassification error, and non-probability sampling may induce selection bias. In this paper, non-parametric and parametric seroprevalence estimators are considered that address both challenges by leveraging validation data and assuming equal probabilities of sample inclusion within covariate-defined strata. Both estimators are shown to be consistent and asymptotically normal, and consistent variance estimators are derived. Simulation studies are presented comparing the estimators over a range of scenarios. The methods are used to estimate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence in New York City, Belgium, and North Carolina.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估计 SARS-CoV-2 的血清流行率。
各国政府和公共卫生当局利用血清流行率研究来指导应对 COVID-19 大流行的措施。血清流行率调查估计的是可检测到 SARS-CoV-2 抗体的个人比例。然而,血清学检测容易出现分类错误,而且非概率抽样可能会导致选择偏差。本文考虑了非参数和参数血清流行率估计方法,通过利用验证数据和假设在协变量定义的分层中纳入样本的概率相等来解决这两个难题。结果表明,这两种估计方法都具有一致性和渐近正态性,并推导出一致的方差估计方法。模拟研究比较了各种情况下的估计值。这些方法被用于估计纽约市、比利时和北卡罗来纳州的严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)血清流行率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
5.00%
发文量
136
审稿时长
>12 weeks
期刊介绍: Series A (Statistics in Society) publishes high quality papers that demonstrate how statistical thinking, design and analyses play a vital role in all walks of life and benefit society in general. There is no restriction on subject-matter: any interesting, topical and revelatory applications of statistics are welcome. For example, important applications of statistical and related data science methodology in medicine, business and commerce, industry, economics and finance, education and teaching, physical and biomedical sciences, the environment, the law, government and politics, demography, psychology, sociology and sport all fall within the journal''s remit. The journal is therefore aimed at a wide statistical audience and at professional statisticians in particular. Its emphasis is on well-written and clearly reasoned quantitative approaches to problems in the real world rather than the exposition of technical detail. Thus, although the methodological basis of papers must be sound and adequately explained, methodology per se should not be the main focus of a Series A paper. Of particular interest are papers on topical or contentious statistical issues, papers which give reviews or exposés of current statistical concerns and papers which demonstrate how appropriate statistical thinking has contributed to our understanding of important substantive questions. Historical, professional and biographical contributions are also welcome, as are discussions of methods of data collection and of ethical issues, provided that all such papers have substantial statistical relevance.
期刊最新文献
A framework for understanding selection bias in real-world healthcare data. Measuring Social Inclusion in Europe: a non-additive approach with the expert-preferences of public policy planners. Dr Arun Chind’s contribution to the Discussion of “A system of population estimates compiled from administrative data only” by Dunne and Zhang Measurement Models for Psychological Attributes The Psychometrics of Standard Setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1