In-Process Data Fusion for Process Monitoring and Control of Metal Additive Manufacturing

Zhuo Yang, Yan Lu, Simin Li, Jennifer Li, Yande Ndiaye, Hui Yang, S. Krishnamurty
{"title":"In-Process Data Fusion for Process Monitoring and Control of Metal Additive Manufacturing","authors":"Zhuo Yang, Yan Lu, Simin Li, Jennifer Li, Yande Ndiaye, Hui Yang, S. Krishnamurty","doi":"10.1115/detc2021-71813","DOIUrl":null,"url":null,"abstract":"\n To accelerate the adoption of Metal Additive Manufacturing (MAM) for production, an understanding of MAM process-structure-property (PSP) relationships is indispensable for quality control. A multitude of physical phenomena involved in MAM necessitates the use of multi-modal and in-process sensing techniques to model, monitor and control the process. The data generated from these sensors and process actuators are fused in various ways to advance our understanding of the process and to estimate both process status and part-in-progress states. This paper presents a hierarchical in-process data fusion framework for MAM, consisting of pointwise, trackwise, layerwise and partwise data analytics. Data fusion can be performed at raw data, feature, decision or mixed levels. The multi-scale data fusion framework is illustrated in detail using a laser powder bed fusion process for anomaly detection, material defect isolation, and part quality prediction. The multi-scale data fusion can be generally applied and integrated with real-time MAM process control, near-real-time layerwise repairing and buildwise decision making. The framework can be utilized by the AM research and standards community to rapidly develop and deploy interoperable tools and standards to analyze, process and exploit two or more different types of AM data. Common engineering standards for AM data fusion systems will dramatically improve the ability to detect, identify and locate part flaws, and then derive optimal policies for process control.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-71813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

To accelerate the adoption of Metal Additive Manufacturing (MAM) for production, an understanding of MAM process-structure-property (PSP) relationships is indispensable for quality control. A multitude of physical phenomena involved in MAM necessitates the use of multi-modal and in-process sensing techniques to model, monitor and control the process. The data generated from these sensors and process actuators are fused in various ways to advance our understanding of the process and to estimate both process status and part-in-progress states. This paper presents a hierarchical in-process data fusion framework for MAM, consisting of pointwise, trackwise, layerwise and partwise data analytics. Data fusion can be performed at raw data, feature, decision or mixed levels. The multi-scale data fusion framework is illustrated in detail using a laser powder bed fusion process for anomaly detection, material defect isolation, and part quality prediction. The multi-scale data fusion can be generally applied and integrated with real-time MAM process control, near-real-time layerwise repairing and buildwise decision making. The framework can be utilized by the AM research and standards community to rapidly develop and deploy interoperable tools and standards to analyze, process and exploit two or more different types of AM data. Common engineering standards for AM data fusion systems will dramatically improve the ability to detect, identify and locate part flaws, and then derive optimal policies for process control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属增材制造过程监测与控制的过程数据融合
为了加速金属增材制造(MAM)在生产中的应用,对MAM工艺-结构-性能(PSP)关系的理解对于质量控制是必不可少的。MAM中涉及的众多物理现象需要使用多模态和过程中的传感技术来建模,监测和控制过程。从这些传感器和过程执行器产生的数据以各种方式融合在一起,以提高我们对过程的理解,并估计过程状态和在制品状态。提出了一种分层的MAM过程中数据融合框架,包括点分析、跟踪分析、分层分析和局部数据分析。数据融合可以在原始数据、特征、决策或混合级别执行。详细介绍了采用激光粉末床融合工艺进行异常检测、材料缺陷隔离和零件质量预测的多尺度数据融合框架。多尺度数据融合可广泛应用于实时MAM过程控制、近实时分层修复和建筑决策。AM研究和标准社区可以利用该框架快速开发和部署可互操作的工具和标准,以分析、处理和利用两种或多种不同类型的AM数据。增材制造数据融合系统的通用工程标准将极大地提高检测、识别和定位零件缺陷的能力,然后得出过程控制的最佳策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Bus Factor in Conceptual System Design: Protecting a Design Process Against Major Regional and World Events Exploration of the Digital Innovation Process in the Smart Product-Service System Optimized Torque Assistance During Walking With an Idealized Hip Exoskeleton An Algorithm for Partitioning Objects Into a Cube Skeleton and Segmented Shell Covers for Parallelized Additive Manufacturing Neurocognitive Effects of Incentivizing Students to Improve Performance Through Repeat Attempts in Design Settings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1