ENHANCEMENT OF MECHANICAL PROPERTIES OF UHMWPE POLYMER BY NITROGEN ION IMPLANTATION

Venkat Kishore N, Nagendra M, Venkateswara Rao T
{"title":"ENHANCEMENT OF MECHANICAL PROPERTIES OF UHMWPE POLYMER BY NITROGEN ION IMPLANTATION","authors":"Venkat Kishore N, Nagendra M, Venkateswara Rao T","doi":"10.37255/JME.V15I4PP101-109","DOIUrl":null,"url":null,"abstract":"The use of ion implantation as a surface treatment technology has been conquered by its applications to prevent wear and oxidation in metal alloys, even though some early works already pointed out that ion implantation could also be effective as a surface treatment for other materials, including polymers. Further research has shown that low dose implantation of energetic light ions could be very effective for improving properties such as wear resistance and hardness in many different polymers. Cross linking of polymeric chains due to ionization energy provided by the stopping process is the main mechanism to explain the changes in mechanical properties. According\nto this model the lighter the ion is, the stronger is the effect. This thesis presents the results obtained by nitrogen implantation in ultra-high molecular weight polyethylene (UHMWPE). N+ ions were implanted at 80 keV, 100 keV and 120 keV energy levels which are maintained at a fluencies or dose of 5×1015 ions/cm2 . Wear resistance was measured using pin-on-disc wear testing machine at a constant load of 18 kg or 177N with a sliding speed of 2 m/s for about 1000m sliding distance. The results clearly show a lower weight and volume loses for samples implanted with nitrogen, in comparison to those implanted with untreated samples. Hence from the results of weight and volume\nloses of the treated or implanted samples with nitrogen ion, gives very good wear resistance than untreated samples.","PeriodicalId":38895,"journal":{"name":"Academic Journal of Manufacturing Engineering","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37255/JME.V15I4PP101-109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

The use of ion implantation as a surface treatment technology has been conquered by its applications to prevent wear and oxidation in metal alloys, even though some early works already pointed out that ion implantation could also be effective as a surface treatment for other materials, including polymers. Further research has shown that low dose implantation of energetic light ions could be very effective for improving properties such as wear resistance and hardness in many different polymers. Cross linking of polymeric chains due to ionization energy provided by the stopping process is the main mechanism to explain the changes in mechanical properties. According to this model the lighter the ion is, the stronger is the effect. This thesis presents the results obtained by nitrogen implantation in ultra-high molecular weight polyethylene (UHMWPE). N+ ions were implanted at 80 keV, 100 keV and 120 keV energy levels which are maintained at a fluencies or dose of 5×1015 ions/cm2 . Wear resistance was measured using pin-on-disc wear testing machine at a constant load of 18 kg or 177N with a sliding speed of 2 m/s for about 1000m sliding distance. The results clearly show a lower weight and volume loses for samples implanted with nitrogen, in comparison to those implanted with untreated samples. Hence from the results of weight and volume loses of the treated or implanted samples with nitrogen ion, gives very good wear resistance than untreated samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮离子注入增强超高分子量聚乙烯聚合物力学性能
离子注入作为一种表面处理技术已经被其用于防止金属合金的磨损和氧化的应用所征服,尽管一些早期的研究已经指出,离子注入也可以有效地作为其他材料的表面处理,包括聚合物。进一步的研究表明,低剂量的高能光离子注入可以非常有效地改善许多不同聚合物的耐磨性和硬度等性能。聚合物链在停止过程中由于电离能而发生交联是解释其力学性能变化的主要机制。根据这个模型,离子越轻,效果越强。本文介绍了在超高分子量聚乙烯(UHMWPE)中注入氮气的结果。N+离子分别以80kev、100kev和120kev的能级注入,并以5×1015离子/cm2的通量或剂量注入。采用针盘式磨损试验机,在恒定载荷为18 kg或177N,滑动速度为2m /s,滑动距离约1000m的条件下,测量其耐磨性。结果清楚地表明,与未经处理的样品相比,注入氮气的样品的重量和体积损失更小。因此,从氮离子处理或注入样品的重量和体积损失的结果来看,比未经处理的样品具有很好的耐磨性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Academic Journal of Manufacturing Engineering
Academic Journal of Manufacturing Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Investigations On Mechanical Properties Of Micro Particulates (Al2O3/B4C) Reinforced In Aluminium 7075 Matrix Composite Welding Windows for Aluminum-Magnesium and Titanium-Steel Explosive Cladding Tribological Performance Evaluation of TMPTO Based Nano-Lubricants Modeling of Resistance Spot Welding Using FEM Efficiency Enhancement of Heat Transfer Fluids by Using Carbon Dots Nanoparticles Derived From Aloe Vera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1