{"title":"A Generative Variational Model for Inverse Problems in Imaging","authors":"Andreas Habring, M. Holler","doi":"10.1137/21m1414978","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the development, analysis and numerical realization of a novel variational model for the regularization of inverse problems in imaging. The proposed model is inspired by the architecture of generative convolutional neural networks; it aims to generate the unknown from variables in a latent space via multi-layer convolutions and non-linear penalties, and penalizes an associated cost. In contrast to conventional neural-network-based approaches, however, the convolution kernels are learned directly from the measured data such that no training is required. The present work provides a mathematical analysis of the proposed model in a function space setting, including proofs for regularity and existence/stability of solutions, and convergence for vanishing noise. Moreover, in a discretized setting, a numerical algorithm for solving various types of inverse problems with the proposed model is derived. Numerical results are provided for applications in inpainting, denoising, deblurring under noise, super-resolution and JPEG decompression with multiple test images.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"40 1","pages":"306-335"},"PeriodicalIF":1.9000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1414978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 11
Abstract
This paper is concerned with the development, analysis and numerical realization of a novel variational model for the regularization of inverse problems in imaging. The proposed model is inspired by the architecture of generative convolutional neural networks; it aims to generate the unknown from variables in a latent space via multi-layer convolutions and non-linear penalties, and penalizes an associated cost. In contrast to conventional neural-network-based approaches, however, the convolution kernels are learned directly from the measured data such that no training is required. The present work provides a mathematical analysis of the proposed model in a function space setting, including proofs for regularity and existence/stability of solutions, and convergence for vanishing noise. Moreover, in a discretized setting, a numerical algorithm for solving various types of inverse problems with the proposed model is derived. Numerical results are provided for applications in inpainting, denoising, deblurring under noise, super-resolution and JPEG decompression with multiple test images.