Evolving support vector machine parameters

Anh Trần Quang, Qianli Zhang, Xing Li
{"title":"Evolving support vector machine parameters","authors":"Anh Trần Quang, Qianli Zhang, Xing Li","doi":"10.1109/ICMLC.2002.1176817","DOIUrl":null,"url":null,"abstract":"The kernel type, kernel parameters and upper bound C control the generalization of support vector machines. The best choice of kernel or C depends on each other and the art of researchers. This paper presents a general optimization problem of support vector machine parameters including a mixed kernel and different upper bounds for unbalanced data. The objectives are /spl xi/a-estimators of the error rate, recall and precision. Evolutionary algorithms are used to solve the problem. The performance of this method is illustrated with a standard data set of intrusion detection application.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"57 1","pages":"548-551 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1176817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

The kernel type, kernel parameters and upper bound C control the generalization of support vector machines. The best choice of kernel or C depends on each other and the art of researchers. This paper presents a general optimization problem of support vector machine parameters including a mixed kernel and different upper bounds for unbalanced data. The objectives are /spl xi/a-estimators of the error rate, recall and precision. Evolutionary algorithms are used to solve the problem. The performance of this method is illustrated with a standard data set of intrusion detection application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
进化支持向量机参数
核类型、核参数和上界C控制支持向量机的泛化。内核或C的最佳选择取决于彼此和研究人员的艺术。本文提出了一个包含混合核和不同上界的支持向量机参数优化问题。目标是错误率、查全率和查准率的估计。进化算法被用来解决这个问题。以入侵检测应用的一个标准数据集为例说明了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary Talk: Digital-Twin Fluid Engineering APPLYING MACHINE LEARNING TECHNIQUES IN DETECTING BACTERIAL VAGINOSIS. OPTICAL COHERENCE TOMOGRAPHY HEART TUBE IMAGE DENOISING BASED ON CONTOURLET TRANSFORM. The multistage support vector machine Anti-control of chaos based on fuzzy neural networks inverse system method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1