Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic Hinge

Q4 Engineering 工程设计学报 Pub Date : 2013-11-14 DOI:10.1155/2013/624658
A. R. Ratazzi, D. Bambill, C. Rossit
{"title":"Free Vibrations of Beam System Structures with Elastic Boundary Conditions and an Internal Elastic Hinge","authors":"A. R. Ratazzi, D. Bambill, C. Rossit","doi":"10.1155/2013/624658","DOIUrl":null,"url":null,"abstract":"The study of the dynamic properties of beam structures is extremely important for proper structural design. This present paper deals with the free in-plane vibrations of a system of two orthogonal beam members with an internal elastic hinge. The system is clamped at one end and is elastically connected at the other. Vibrations are analyzed for different boundary conditions at the elastically connected end, including classical conditions such as clamped, simply supported, and free. The beam system is assumed to behave according to the Bernoulli-Euler theory. The governing equations of motion of the structural system in free bending vibration are derived using Hamilton's principle. The exact expression for natural frequencies is obtained using the calculus of variations technique and the method of separation of variables. In the frequency analysis, special attention is paid to the influence of the flexibility and location of the elastic hinge. Results are very similar with those obtained using the finite element method, with values of particular cases of the model available in the literature, and with measurements in an experimental device.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"30 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2013/624658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6

Abstract

The study of the dynamic properties of beam structures is extremely important for proper structural design. This present paper deals with the free in-plane vibrations of a system of two orthogonal beam members with an internal elastic hinge. The system is clamped at one end and is elastically connected at the other. Vibrations are analyzed for different boundary conditions at the elastically connected end, including classical conditions such as clamped, simply supported, and free. The beam system is assumed to behave according to the Bernoulli-Euler theory. The governing equations of motion of the structural system in free bending vibration are derived using Hamilton's principle. The exact expression for natural frequencies is obtained using the calculus of variations technique and the method of separation of variables. In the frequency analysis, special attention is paid to the influence of the flexibility and location of the elastic hinge. Results are very similar with those obtained using the finite element method, with values of particular cases of the model available in the literature, and with measurements in an experimental device.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有弹性边界条件和内弹性铰链的梁系结构的自由振动
研究梁结构的动力特性对合理设计梁结构具有重要意义。本文研究了具有内弹性铰链的两个正交梁的自由面内振动问题。该系统一端夹紧,另一端弹性连接。分析了弹性连接端不同边界条件下的振动,包括夹紧、简支和自由等经典条件。假定光束系统的行为符合伯努利-欧拉理论。利用哈密顿原理推导了结构系统在自由弯曲振动下的运动控制方程。利用变分法和分离变量法,得到了固有频率的精确表达式。在频率分析中,特别注意了弹性铰链的柔度和位置的影响。结果与用有限元法得到的结果非常相似,与文献中可用的模型的特定情况的值非常相似,与实验装置中的测量结果非常相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
工程设计学报
工程设计学报 Engineering-Engineering (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
2447
审稿时长
14 weeks
期刊介绍: Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.
期刊最新文献
Innovative design of box elevator epidemic prevention function integrating AD and TRIZ Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer Application progress of artificial intelligence in military confrontation Cloud storage data integrity audit based on an index–stub table Clinical named entity recognition from Chinese electronic medical records using a double-layer annotation model combining a domain dictionary with CRF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1