Himansu S. Biswal, Surjendu Bhattacharyya, Aditi Bhattacherjee, S. Wategaonkar
{"title":"Nature and strength of sulfur-centred hydrogen bonds: laser spectroscopic investigations in the gas phase and quantum-chemical calculations","authors":"Himansu S. Biswal, Surjendu Bhattacharyya, Aditi Bhattacherjee, S. Wategaonkar","doi":"10.1080/0144235X.2015.1022946","DOIUrl":null,"url":null,"abstract":"The importance of Sulfur centred hydrogen bonds (SCHBs) cannot be underestimated given the current day knowledge of its non-covalent interactions prevalent in many biopolymers as well as in organic systems. Based on the distance/angle constraints available from the structural database, these interactions have been interchangeably termed as van der Waals/hydrogen bonded complexes. There is a lack of sufficient spectroscopic evidence that can unequivocally term these interactions as hydrogen bonding interactions. In this review we present laser spectroscopic investigations of isolated binary complexes of H-bond donor-acceptor molecules containing Sulfur atom. The complexes were formed using supersonic jet expansion method and the IR/UV spectroscopic investigations were carried out on mass selected binary complexes. The pertinent questions regarding SCHBs addressed herein are (1) Is electronegativity the controlling factor to be a potent H-bond donor/acceptor? (2) How do SCHBs compare with their oxygen counterpart? (3) What is the nature of SCHBs, i.e. what are the dominating forces in stabilising these hydrogen bonds? (4) Do SCHBs follow classical H-bond acid–base formalism? (5) Are SCHBs found in peptides and proteins? If so, what are their strengths? Do they control the structure of the peptides? The experimental investigations were also supported by high level of ab initio computations.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"50 1","pages":"160 - 99"},"PeriodicalIF":2.5000,"publicationDate":"2015-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Reviews in Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/0144235X.2015.1022946","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 46
Abstract
The importance of Sulfur centred hydrogen bonds (SCHBs) cannot be underestimated given the current day knowledge of its non-covalent interactions prevalent in many biopolymers as well as in organic systems. Based on the distance/angle constraints available from the structural database, these interactions have been interchangeably termed as van der Waals/hydrogen bonded complexes. There is a lack of sufficient spectroscopic evidence that can unequivocally term these interactions as hydrogen bonding interactions. In this review we present laser spectroscopic investigations of isolated binary complexes of H-bond donor-acceptor molecules containing Sulfur atom. The complexes were formed using supersonic jet expansion method and the IR/UV spectroscopic investigations were carried out on mass selected binary complexes. The pertinent questions regarding SCHBs addressed herein are (1) Is electronegativity the controlling factor to be a potent H-bond donor/acceptor? (2) How do SCHBs compare with their oxygen counterpart? (3) What is the nature of SCHBs, i.e. what are the dominating forces in stabilising these hydrogen bonds? (4) Do SCHBs follow classical H-bond acid–base formalism? (5) Are SCHBs found in peptides and proteins? If so, what are their strengths? Do they control the structure of the peptides? The experimental investigations were also supported by high level of ab initio computations.
期刊介绍:
International Reviews in Physical Chemistry publishes review articles describing frontier research areas in physical chemistry. Internationally renowned scientists describe their own research in the wider context of the field. The articles are of interest not only to specialists but also to those wishing to read general and authoritative accounts of recent developments in physical chemistry, chemical physics and theoretical chemistry. The journal appeals to research workers, lecturers and research students alike.