{"title":"R-trees with Update Memos","authors":"Xiaopeng Xiong, Walid G. Aref","doi":"10.1109/ICDE.2006.125","DOIUrl":null,"url":null,"abstract":"The problem of frequently updating multi-dimensional indexes arises in many location-dependent applications. While the R-tree and its variants are one of the dominant choices for indexing multi-dimensional objects, the R-tree exhibits inferior performance in the presence of frequent updates. In this paper, we present an R-tree variant, termed the RUM-tree (stands for R-tree with Update Memo) that minimizes the cost of object updates. The RUM-tree processes updates in a memo-based approach that avoids disk accesses for purging old entries during an update process. Therefore, the cost of an update operation in the RUM-tree reduces to the cost of only an insert operation. The removal of old object entries is carried out by a garbage cleaner inside the RUM-tree. In this paper, we present the details of the RUM-tree and study its properties. Theoretical analysis and experimental evaluation demonstrate that the RUMtree outperforms other R-tree variants by up to a factor of eight in scenarios with frequent updates.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"65 1","pages":"22-22"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79
Abstract
The problem of frequently updating multi-dimensional indexes arises in many location-dependent applications. While the R-tree and its variants are one of the dominant choices for indexing multi-dimensional objects, the R-tree exhibits inferior performance in the presence of frequent updates. In this paper, we present an R-tree variant, termed the RUM-tree (stands for R-tree with Update Memo) that minimizes the cost of object updates. The RUM-tree processes updates in a memo-based approach that avoids disk accesses for purging old entries during an update process. Therefore, the cost of an update operation in the RUM-tree reduces to the cost of only an insert operation. The removal of old object entries is carried out by a garbage cleaner inside the RUM-tree. In this paper, we present the details of the RUM-tree and study its properties. Theoretical analysis and experimental evaluation demonstrate that the RUMtree outperforms other R-tree variants by up to a factor of eight in scenarios with frequent updates.