Comparison of different methods of nitrogen-vacancy layer formation in diamond for wide-field quantum microscopy

A. Healey, Alastair Stacey, Alastair Stacey, Brett C. Johnson, D. A. Broadway, T. Teraji, David A. Simpson, J. Tetienne, L. Hollenberg
{"title":"Comparison of different methods of nitrogen-vacancy layer formation in diamond for wide-field quantum microscopy","authors":"A. Healey, Alastair Stacey, Alastair Stacey, Brett C. Johnson, D. A. Broadway, T. Teraji, David A. Simpson, J. Tetienne, L. Hollenberg","doi":"10.1103/PHYSREVMATERIALS.4.104605","DOIUrl":null,"url":null,"abstract":"Thin layers of near-surface nitrogen-vacancy (NV) defects in diamond substrates are the workhorse of NV-based widefield magnetic microscopy, which has applications in physics, geology and biology. Several methods exist to create such NV layers, which generally involve incorporating nitrogen atoms (N) and vacancies (V) into the diamond through growth and/or irradiation. While there have been detailed studies of individual methods, a direct side-by-side experimental comparison of the resulting magnetic sensitivities is still missing. Here we characterise, at room and cryogenic temperatures, $\\approx100$ nm thick NV layers fabricated via three different methods: 1) low-energy carbon irradiation of N-rich high-pressure high-temperature (HPHT) diamond, 2) carbon irradiation of $\\delta$-doped chemical vapour deposition (CVD) diamond, 3) low-energy N$^+$ or CN$^-$ implantation into N-free CVD diamond. Despite significant variability within each method, we find that the best HPHT samples yield similar magnetic sensitivities (within a factor 2 on average) to our $\\delta$-doped samples, of $<2$~$\\mu$T Hz$^{-1/2}$ for DC magnetic fields and $<100$~nT Hz$^{-1/2}$ for AC fields (for a $400$~nm~$\\times~400$~nm pixel), while the N$^+$ and CN$^-$ implanted samples exhibit an inferior sensitivity by a factor 2-5, at both room and low temperature. We also examine the crystal lattice strain caused by the respective methods and discuss the implications this has for widefield NV imaging. The pros and cons of each method, and potential future improvements, are discussed. This study highlights that low-energy irradiation of HPHT diamond, despite its relative simplicity and low cost, is a competitive method to create thin NV layers for widefield magnetic imaging.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVMATERIALS.4.104605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Thin layers of near-surface nitrogen-vacancy (NV) defects in diamond substrates are the workhorse of NV-based widefield magnetic microscopy, which has applications in physics, geology and biology. Several methods exist to create such NV layers, which generally involve incorporating nitrogen atoms (N) and vacancies (V) into the diamond through growth and/or irradiation. While there have been detailed studies of individual methods, a direct side-by-side experimental comparison of the resulting magnetic sensitivities is still missing. Here we characterise, at room and cryogenic temperatures, $\approx100$ nm thick NV layers fabricated via three different methods: 1) low-energy carbon irradiation of N-rich high-pressure high-temperature (HPHT) diamond, 2) carbon irradiation of $\delta$-doped chemical vapour deposition (CVD) diamond, 3) low-energy N$^+$ or CN$^-$ implantation into N-free CVD diamond. Despite significant variability within each method, we find that the best HPHT samples yield similar magnetic sensitivities (within a factor 2 on average) to our $\delta$-doped samples, of $<2$~$\mu$T Hz$^{-1/2}$ for DC magnetic fields and $<100$~nT Hz$^{-1/2}$ for AC fields (for a $400$~nm~$\times~400$~nm pixel), while the N$^+$ and CN$^-$ implanted samples exhibit an inferior sensitivity by a factor 2-5, at both room and low temperature. We also examine the crystal lattice strain caused by the respective methods and discuss the implications this has for widefield NV imaging. The pros and cons of each method, and potential future improvements, are discussed. This study highlights that low-energy irradiation of HPHT diamond, despite its relative simplicity and low cost, is a competitive method to create thin NV layers for widefield magnetic imaging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宽视场量子显微镜下金刚石中氮空位层不同形成方法的比较
金刚石衬底近表面氮空位(NV)缺陷的薄层是基于NV的宽视场磁显微镜的主要工作,在物理、地质和生物等领域都有应用。有几种方法可以制造这种NV层,通常是通过生长和/或辐照将氮原子(N)和空位(V)结合到金刚石中。虽然已经对个别方法进行了详细的研究,但对所得到的磁灵敏度进行直接的并排实验比较仍然缺失。在室温和低温下,我们通过三种不同的方法制备了$\approx100$ nm厚的NV层:1)低能碳辐照富N高压高温(HPHT)金刚石,2)碳辐照$\delta$掺杂化学气相沉积(CVD)金刚石,3)低能N $^+$或CN $^-$注入无N CVD金刚石。尽管每种方法都有显著的差异,但我们发现最好的HPHT样品与我们的$\delta$掺杂样品产生相似的磁灵敏度(平均在2因子内),直流磁场为$<2$$\mu$ T Hz $^{-1/2}$,交流磁场为$<100$ nT Hz $^{-1/2}$(对于$400$ nm $\times~400$ nm像素)。而N $^+$和CN $^-$植入样品在室温和低温下的灵敏度都差2-5倍。我们还研究了由各自方法引起的晶格应变,并讨论了这对宽视场NV成像的影响。讨论了每种方法的优缺点以及未来可能的改进。这项研究强调,尽管HPHT金刚石的低能量辐照相对简单且成本低,但它是一种有竞争力的方法,可以为宽场磁成像创建薄的NV层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance photonic microwave filters based on a 50GHz FSR optical soliton crystal Kerr micro-comb Ultra-high bandwidth fiber-optic data transmission with a single chip source High order pulse-echo (HOPE) ultrasound Data-driven modelling of scalable spinodoid structures for energy absorption Radioplasmonics: design of plasmonic milli-particles in air and absorbing media for antenna communication and human-body in-vivo applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1