Aghimien Ev, Osho Jsa, S. Hauser, B. Deni, Ade-Oni Vd, Oboite Fo
{"title":"Growth and Yield Models for Uneven-Aged Secondary Forest in IITA,Ibadan, Nigeria","authors":"Aghimien Ev, Osho Jsa, S. Hauser, B. Deni, Ade-Oni Vd, Oboite Fo","doi":"10.4172/2168-9776.1000173","DOIUrl":null,"url":null,"abstract":"The development of effective and accurate models to predict forest growth and products is essential for forest managers and planners. Decision-makers need information on the present yield of the forest for the purpose of monitoring growth. Despite the importance of growth and yield models in the determination of appropriate forest management strategies, no study has been undertaken in IITA’s Forest Reserve. Volume equations for predicting tree volume were developed for tree species in IITA’s Forest Reserve. Complete enumeration of trees larger than 5 cm was carried out in fifteen permanent sample plots of size 20 m × 20 m. The data assessed were diameter at base, diameter at middle, diameter at top, diameter at breast height and total height for 1214 tree species. All trees encountered in each plot were identified with their botanical names. The results revealed that there were 34 important tree species distributed among 23 families in the reserve. The most abundant tree species is Newbouldia laevis while the family with the highest number of species is Moraceae with six species. The number of observations per species ranged from 1 to 255 while the diameter at breast height ranged from 5.00 cm to 201.20 cm and highest percentage of the trees belong to the least diameter class (5-9 cm). The volume equations were fitted for individual species greater than or equal to five and all species combined. The assessment criteria coefficient of determination (R2), Standard error of estimate (SEE) with the validation results (using simple linear regression equation, percentage bias and probability plots of residuals) show that the model of logarithm transformed diameter at base and logarithm transformed total height was of good fit. Very high R2 values, small SEE and percentage biases were obtained. The model was discovered to be very adequate for tree volume estimation in the study area. It is therefore recommended for further use in this ecosystem and in any other forest ecosystem with similar site condition.","PeriodicalId":35920,"journal":{"name":"林业科学研究","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"林业科学研究","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4172/2168-9776.1000173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3
Abstract
The development of effective and accurate models to predict forest growth and products is essential for forest managers and planners. Decision-makers need information on the present yield of the forest for the purpose of monitoring growth. Despite the importance of growth and yield models in the determination of appropriate forest management strategies, no study has been undertaken in IITA’s Forest Reserve. Volume equations for predicting tree volume were developed for tree species in IITA’s Forest Reserve. Complete enumeration of trees larger than 5 cm was carried out in fifteen permanent sample plots of size 20 m × 20 m. The data assessed were diameter at base, diameter at middle, diameter at top, diameter at breast height and total height for 1214 tree species. All trees encountered in each plot were identified with their botanical names. The results revealed that there were 34 important tree species distributed among 23 families in the reserve. The most abundant tree species is Newbouldia laevis while the family with the highest number of species is Moraceae with six species. The number of observations per species ranged from 1 to 255 while the diameter at breast height ranged from 5.00 cm to 201.20 cm and highest percentage of the trees belong to the least diameter class (5-9 cm). The volume equations were fitted for individual species greater than or equal to five and all species combined. The assessment criteria coefficient of determination (R2), Standard error of estimate (SEE) with the validation results (using simple linear regression equation, percentage bias and probability plots of residuals) show that the model of logarithm transformed diameter at base and logarithm transformed total height was of good fit. Very high R2 values, small SEE and percentage biases were obtained. The model was discovered to be very adequate for tree volume estimation in the study area. It is therefore recommended for further use in this ecosystem and in any other forest ecosystem with similar site condition.
期刊介绍:
Forestry Research is a comprehensive academic journal of forestry science organized by the Chinese Academy of Forestry. The main task is to reflect the latest research results, academic papers and research reports, scientific and technological developments and information on forestry science mainly organized by the Chinese Academy of Forestry, to promote academic exchanges at home and abroad, to carry out academic discussions, to flourish forestry science, and to better serve China's forestry construction.
The main contents are: forest seeds, seedling afforestation, forest plants, forest genetic breeding, tree physiology and biochemistry, forest insects, resource insects, forest pathology, forest microorganisms, forest birds and animals, forest soil, forest ecology, forest management, forest manager, forestry remote sensing, forestry biotechnology and other new technologies, new methods, and to increase the development strategy of forestry, the trend of development of disciplines, technology policies and strategies, etc., and to increase the forestry development strategy, the trend of development of disciplines, technology policies and strategies. It is suitable for scientists and technicians of forestry and related disciplines, teachers and students of colleges and universities, leaders and managers, and grassroots forestry workers.