Pore engineering in covalent organic framework membrane for gas separation

Zhou Qu , Chenyu Lai , Guangjin Zhao , Alexander Knebel , Hongwei Fan , Hong Meng
{"title":"Pore engineering in covalent organic framework membrane for gas separation","authors":"Zhou Qu ,&nbsp;Chenyu Lai ,&nbsp;Guangjin Zhao ,&nbsp;Alexander Knebel ,&nbsp;Hongwei Fan ,&nbsp;Hong Meng","doi":"10.1016/j.advmem.2022.100037","DOIUrl":null,"url":null,"abstract":"<div><p>Covalent Organic Frameworks (COFs) have attracted significant interest as promising separation membrane materials for their well-organized porous system and highly ordered crystalline structure. However, compared with the molecular and ionic separation in liquid phase, the advance of the COF membrane in gas separation has been relatively slow. To achieve desirable gas separation performance, the pore size of the COF membrane is expected to be regulated into the gas molecule-selective region, and also the tuning of pore enviroment is of importance. This review focuses on the key progress of the pore regulation strategies for the COF membrane towards gas separation. We highlight the different design concepts for selective gas transport channels, and introduce the specific applications to elucidate the structure-performance relationship of the COF membrane. We discuss the critical challenges and opportunities faced by the COF membranes in the field of gas separation, aiming at guiding the direction of the future efforts and promoting their development.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"2 ","pages":"Article 100037"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823422000136/pdfft?md5=17ea4ea7f0e9ae79d5b661b373c48d9c&pid=1-s2.0-S2772823422000136-main.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823422000136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Covalent Organic Frameworks (COFs) have attracted significant interest as promising separation membrane materials for their well-organized porous system and highly ordered crystalline structure. However, compared with the molecular and ionic separation in liquid phase, the advance of the COF membrane in gas separation has been relatively slow. To achieve desirable gas separation performance, the pore size of the COF membrane is expected to be regulated into the gas molecule-selective region, and also the tuning of pore enviroment is of importance. This review focuses on the key progress of the pore regulation strategies for the COF membrane towards gas separation. We highlight the different design concepts for selective gas transport channels, and introduce the specific applications to elucidate the structure-performance relationship of the COF membrane. We discuss the critical challenges and opportunities faced by the COF membranes in the field of gas separation, aiming at guiding the direction of the future efforts and promoting their development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共价有机骨架膜气体分离孔工程
共价有机骨架(COFs)由于其良好的多孔系统和高度有序的晶体结构,作为一种有前途的分离膜材料而引起了人们的极大兴趣。然而,与液相中的分子分离和离子分离相比,COF膜在气相分离中的进展相对缓慢。为了获得理想的气体分离性能,需要将COF膜的孔径调节到气体分子选择区域,而孔环境的调节也很重要。本文综述了碳膜气体分离孔调控策略的研究进展。重点介绍了选择性气体输送通道的不同设计理念,并介绍了COF膜的具体应用,以阐明COF膜的结构-性能关系。讨论了COF膜在气体分离领域面临的关键挑战和机遇,旨在指导未来努力的方向,促进其发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
期刊最新文献
Progress in design of halloysite nanotubes-polymer nanocomposite membranes and their applications Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics Spray-assisted assembly of thin-film composite membranes in one process Erratum regarding Declaration of Competing Interest statements in previously published articles Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1