Performance Evaluation of Dynamic Modulus Predictive Models for Asphalt Mixtures

N. Solatifar
{"title":"Performance Evaluation of Dynamic Modulus Predictive Models for Asphalt Mixtures","authors":"N. Solatifar","doi":"10.22075/JRCE.2020.17391.1324","DOIUrl":null,"url":null,"abstract":"Dynamic modulus characterizes the viscoelastic behavior of asphalt materials and is the most important input parameter for design and rehabilitation of flexible pavements using Mechanistic–Empirical Pavement Design Guide (MEPDG). Laboratory determination of dynamic modulus is very expensive and time consuming. To overcome this challenge, several predictive models were developed to determine dynamic modulus of asphalt mixtures instead of laboratory testing. Present study utilizes a large database of 1320 dynamic modulus test results developed at the University of Maryland to evaluate the performance and accuracy of different dynamic modulus predictive models. For this purpose, six conventional dynamic modulus predictive models including Witczak, Modified Witczak, Hirsch, Al-Khateeb, Global and Simplified Global models were considered and dynamic moduli of asphalt mixtures were determined. These moduli were then compared with those determined from laboratory test results. Performance evaluation of the models showed high prediction accuracy and low prediction bias with good correlation between predicted moduli and measured values for Witczak and Global models.","PeriodicalId":52415,"journal":{"name":"Journal of Rehabilitation in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rehabilitation in Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/JRCE.2020.17391.1324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

Dynamic modulus characterizes the viscoelastic behavior of asphalt materials and is the most important input parameter for design and rehabilitation of flexible pavements using Mechanistic–Empirical Pavement Design Guide (MEPDG). Laboratory determination of dynamic modulus is very expensive and time consuming. To overcome this challenge, several predictive models were developed to determine dynamic modulus of asphalt mixtures instead of laboratory testing. Present study utilizes a large database of 1320 dynamic modulus test results developed at the University of Maryland to evaluate the performance and accuracy of different dynamic modulus predictive models. For this purpose, six conventional dynamic modulus predictive models including Witczak, Modified Witczak, Hirsch, Al-Khateeb, Global and Simplified Global models were considered and dynamic moduli of asphalt mixtures were determined. These moduli were then compared with those determined from laboratory test results. Performance evaluation of the models showed high prediction accuracy and low prediction bias with good correlation between predicted moduli and measured values for Witczak and Global models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沥青混合料动态模量预测模型的性能评价
动态模量表征了沥青材料的粘弹性行为,是使用力学经验路面设计指南(MEPDG)设计和修复柔性路面最重要的输入参数。动态模量的实验室测定既昂贵又费时。为了克服这一挑战,开发了几种预测模型来确定沥青混合料的动态模量,而不是实验室测试。本研究利用马里兰大学开发的1320个动态模量试验结果的大型数据库来评估不同动态模量预测模型的性能和准确性。为此,考虑了Witczak模型、修正Witczak模型、Hirsch模型、Al-Khateeb模型、Global模型和简化Global模型等6种常规动态模量预测模型,确定了沥青混合料的动态模量。然后将这些模量与从实验室测试结果中确定的模量进行比较。模型性能评价表明,Witczak模型和Global模型预测精度高,预测偏差小,预测模量与实测值相关性好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Rehabilitation in Civil Engineering
Journal of Rehabilitation in Civil Engineering Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Damage Sensitive-Stories of RC and Steel Frames under Critical Mainshock-Aftershock Ground Motions Evaluation of Intermediate Reinforced Concrete Moment Frame subjected to Truck collision Damage Detection in Prestressed Concrete Slabs Using Wavelet Analysis of Vibration Responses in the Time Domain Rehabilitation of Corroded Reinforced Concrete Elements by Rebar Replacement Risk assessment and challenges faced in repairs and rehabilitation of dilapidated buildings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1