{"title":"Deep learning-based path tracking control using lane detection and traffic sign detection for autonomous driving","authors":"Swati Jaiswal, B. C. Mohan","doi":"10.3233/web-230011","DOIUrl":null,"url":null,"abstract":"Automated vehicles are a significant advancement in transportation technique, which provides safe, sustainable, and reliable transport. Lane detection, maneuver forecasting, and traffic sign recognition are the fundamentals of automated vehicles. Hence, this research focuses on developing a dynamic real-time decision-making system to obtain an effective driving experience in autonomous vehicles with the advancement of deep learning techniques. The deep learning classifier such as deep convolutional neural network (Deep CNN), SegNet and are utilized in this research for traffic signal detection, road segmentation, and lane detection. The main highlight of the research relies on the proposed Finch Hunt optimization, which involves the hyperparameter tuning of a deep learning classifier. The proposed real-time decision-making system achieves 97.44% accuracy, 97.56% of sensitivity, and 97.83% of specificity. Further, the proposed segmentation model achieves the highest clustering accuracy with 90.37% and the proposed lane detection model attains the lowest mean absolute error, mean square error, and root mean error of 17.76%, 11.32%, and 5.66% respectively. The proposed road segmentation model exceeds all the competent models in terms of clustering accuracy. Finally, the proposed model provides a better output for lane detection with minimum error, when compared with the existing model.","PeriodicalId":42775,"journal":{"name":"Web Intelligence","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-230011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Automated vehicles are a significant advancement in transportation technique, which provides safe, sustainable, and reliable transport. Lane detection, maneuver forecasting, and traffic sign recognition are the fundamentals of automated vehicles. Hence, this research focuses on developing a dynamic real-time decision-making system to obtain an effective driving experience in autonomous vehicles with the advancement of deep learning techniques. The deep learning classifier such as deep convolutional neural network (Deep CNN), SegNet and are utilized in this research for traffic signal detection, road segmentation, and lane detection. The main highlight of the research relies on the proposed Finch Hunt optimization, which involves the hyperparameter tuning of a deep learning classifier. The proposed real-time decision-making system achieves 97.44% accuracy, 97.56% of sensitivity, and 97.83% of specificity. Further, the proposed segmentation model achieves the highest clustering accuracy with 90.37% and the proposed lane detection model attains the lowest mean absolute error, mean square error, and root mean error of 17.76%, 11.32%, and 5.66% respectively. The proposed road segmentation model exceeds all the competent models in terms of clustering accuracy. Finally, the proposed model provides a better output for lane detection with minimum error, when compared with the existing model.
期刊介绍:
Web Intelligence (WI) is an official journal of the Web Intelligence Consortium (WIC), an international organization dedicated to promoting collaborative scientific research and industrial development in the era of Web intelligence. WI seeks to collaborate with major societies and international conferences in the field. WI is a peer-reviewed journal, which publishes four issues a year, in both online and print form. WI aims to achieve a multi-disciplinary balance between research advances in theories and methods usually associated with Collective Intelligence, Data Science, Human-Centric Computing, Knowledge Management, and Network Science. It is committed to publishing research that both deepen the understanding of computational, logical, cognitive, physical, and social foundations of the future Web, and enable the development and application of technologies based on Web intelligence. The journal features high-quality, original research papers (including state-of-the-art reviews), brief papers, and letters in all theoretical and technology areas that make up the field of WI. The papers should clearly focus on some of the following areas of interest: a. Collective Intelligence[...] b. Data Science[...] c. Human-Centric Computing[...] d. Knowledge Management[...] e. Network Science[...]