Quantum interference between independent solid-state single-photon sources separated by 300 km fiber

Xiang You, Mingyang Zheng, Si Chen, Run-Ze Liu, J. Qin, Mo-Chi Xu, Zhenbin Ge, T. Chung, Yu-Kun Qiao, Yang-Fan Jiang, Han-Sen Zhong, Ming-Cheng Chen, Hui Wang, Yu-Ming He, Xiuping Xie, Hao Li, L. You, C. Schneider, Juan Yin, Teng-Yun Chen, M. Benyoucef, Y. Huo, S. Höfling, Qiang Zhang, Chaoyang Lu, Jian-Wei Pan
{"title":"Quantum interference between independent solid-state single-photon sources separated by 300 km fiber","authors":"Xiang You, Mingyang Zheng, Si Chen, Run-Ze Liu, J. Qin, Mo-Chi Xu, Zhenbin Ge, T. Chung, Yu-Kun Qiao, Yang-Fan Jiang, Han-Sen Zhong, Ming-Cheng Chen, Hui Wang, Yu-Ming He, Xiuping Xie, Hao Li, L. You, C. Schneider, Juan Yin, Teng-Yun Chen, M. Benyoucef, Y. Huo, S. Höfling, Qiang Zhang, Chaoyang Lu, Jian-Wei Pan","doi":"10.21203/RS.3.RS-691995/V1","DOIUrl":null,"url":null,"abstract":"\n In the quest to realize a scalable quantum network, semiconductor quantum dots (QDs) offer distinct advantages including high single-photon efficiency and indistinguishability, high repetition rate (tens of GHz with Purcell enhancement), interconnectivity with spin qubits, and a scalable on-chip platform. However, in the past two decades, the visibility of quantum interference between independent QDs rarely went beyond the classical limit of 50% and the distances were limited from a few meters to kilometers. Here, we report quantum interference between two single photons from independent QDs separated by 302 km optical fiber. The single photons are generated from resonantly driven single QDs deterministically coupled to microcavities. Quantum frequency conversions are used to eliminate the QD inhomogeneity and shift the emission wavelength to the telecommunication band. The observed interference visibility is 0.67\\pm0.02 (0.93\\pm0.04) without (with) temporal filtering. Feasible improvements can further extend the distance to ~600 km. Our work represents a key step to long-distance solid-state quantum networks.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-691995/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In the quest to realize a scalable quantum network, semiconductor quantum dots (QDs) offer distinct advantages including high single-photon efficiency and indistinguishability, high repetition rate (tens of GHz with Purcell enhancement), interconnectivity with spin qubits, and a scalable on-chip platform. However, in the past two decades, the visibility of quantum interference between independent QDs rarely went beyond the classical limit of 50% and the distances were limited from a few meters to kilometers. Here, we report quantum interference between two single photons from independent QDs separated by 302 km optical fiber. The single photons are generated from resonantly driven single QDs deterministically coupled to microcavities. Quantum frequency conversions are used to eliminate the QD inhomogeneity and shift the emission wavelength to the telecommunication band. The observed interference visibility is 0.67\pm0.02 (0.93\pm0.04) without (with) temporal filtering. Feasible improvements can further extend the distance to ~600 km. Our work represents a key step to long-distance solid-state quantum networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相隔300公里光纤的独立固态单光子源之间的量子干涉
在实现可扩展量子网络的过程中,半导体量子点(QDs)具有明显的优势,包括高单光子效率和不可区分性,高重复率(Purcell增强的数十GHz),与自旋量子比特的互连性以及可扩展的片上平台。然而,在过去的二十年里,独立量子点之间的量子干涉可见度很少超过50%的经典极限,距离也被限制在几米到几公里之间。在这里,我们报道了由302公里光纤分隔的独立量子点的两个单光子之间的量子干涉。单光子是由共振驱动的单量子点与微腔确定性耦合产生的。利用量子频率转换消除量子点的不均匀性,并将发射波长移至电信波段。观测到的干扰可见度为0.67\pm0.02(无时间滤波时0.93\pm0.04)。可行的改进可以进一步将距离延长到~600公里。我们的工作代表了长距离固态量子网络的关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Quantum Machine Learning A Wave Nature-Based Interpretation of The Nonclassical Feature of Photon Bunching On A Beam Splitter The Future of Quantum Theory: A Way Out of the Impasse Partial Measurements of Quantum Systems Emergence of the Classical from within the Quantum Universe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1