A. Mariakakis, Sayna Parsi, Shwetak N. Patel, J. Wobbrock
{"title":"Drunk User Interfaces: Determining Blood Alcohol Level through Everyday Smartphone Tasks","authors":"A. Mariakakis, Sayna Parsi, Shwetak N. Patel, J. Wobbrock","doi":"10.1145/3173574.3173808","DOIUrl":null,"url":null,"abstract":"Breathalyzers, the standard quantitative method for assessing inebriation, are primarily owned by law enforcement and used only after a potentially inebriated individual is caught driving. However, not everyone has access to such specialized hardware. We present drunk user interfaces: smartphone user interfaces that measure how alcohol affects a person's motor coordination and cognition using performance metrics and sensor data. We examine five drunk user interfaces and combine them to form the \"DUI app\". DUI uses machine learning models trained on human performance metrics and sensor data to estimate a person's blood alcohol level (BAL). We evaluated DUI on 14 individuals in a week-long longitudinal study wherein each participant used DUI at various BALs. We found that with a global model that accounts for user-specific learning, DUI can estimate a person's BAL with an absolute mean error of 0.005% ± 0.007% and a Pearson's correlation coefficient of 0.96 with breathalyzer measurements.","PeriodicalId":20512,"journal":{"name":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173574.3173808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Breathalyzers, the standard quantitative method for assessing inebriation, are primarily owned by law enforcement and used only after a potentially inebriated individual is caught driving. However, not everyone has access to such specialized hardware. We present drunk user interfaces: smartphone user interfaces that measure how alcohol affects a person's motor coordination and cognition using performance metrics and sensor data. We examine five drunk user interfaces and combine them to form the "DUI app". DUI uses machine learning models trained on human performance metrics and sensor data to estimate a person's blood alcohol level (BAL). We evaluated DUI on 14 individuals in a week-long longitudinal study wherein each participant used DUI at various BALs. We found that with a global model that accounts for user-specific learning, DUI can estimate a person's BAL with an absolute mean error of 0.005% ± 0.007% and a Pearson's correlation coefficient of 0.96 with breathalyzer measurements.