Development of a 3D model of clinically relevant microcalcifications

A. Carton, C. Jailin, Raoul De Silva, Rubèn Sanchez De la Rosa, S. Muller
{"title":"Development of a 3D model of clinically relevant microcalcifications","authors":"A. Carton, C. Jailin, Raoul De Silva, Rubèn Sanchez De la Rosa, S. Muller","doi":"10.1117/12.2625771","DOIUrl":null,"url":null,"abstract":"A realistic 3D anthropomorphic software model of microcalcifications may serve as a useful tool to assess the performance of breast imaging applications through simulations. We present a method allowing to simulate visually realistic microcalcifications with large morphological variability. Principal component analysis (PCA) was used to analyze the shape of 281 biopsied microcalcifications imaged with a micro-CT. The PCA analysis requires the same number of shape components for each input microcalcification. Therefore, the voxel-based microcalcifications were converted to a surface mesh with same number of vertices using a marching cube algorithm. The vertices were registered using an iterative closest point algorithm and a simulated annealing algorithm. To evaluate the approach, input microcalcifications were reconstructed by progressively adding principal components. Input and reconstructed microcalcifications were visually and quantitatively compared. New microcalcifications were simulated using randomly sampled principal components determined from the PCA applied to the input microcalcifications, and their realism was appreciated through visual assessment. Preliminary results have shown that input microcalcifications can be reconstructed with high visual fidelity when using 62 principal components, representing 99.5% variance. For that condition, the average L2 norm and dice coefficient were respectively 10.5 μm and 0.93. Newly generated microcalcifications with 62 principal components were found to be visually similar, while not identical, to input microcalcifications. The proposed PCA model of microcalcification shapes allows to successfully reconstruct input microcalcifications and to generate new visually realistic microcalcifications with various morphologies.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"74 1","pages":"1228602 - 1228602-7"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2625771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A realistic 3D anthropomorphic software model of microcalcifications may serve as a useful tool to assess the performance of breast imaging applications through simulations. We present a method allowing to simulate visually realistic microcalcifications with large morphological variability. Principal component analysis (PCA) was used to analyze the shape of 281 biopsied microcalcifications imaged with a micro-CT. The PCA analysis requires the same number of shape components for each input microcalcification. Therefore, the voxel-based microcalcifications were converted to a surface mesh with same number of vertices using a marching cube algorithm. The vertices were registered using an iterative closest point algorithm and a simulated annealing algorithm. To evaluate the approach, input microcalcifications were reconstructed by progressively adding principal components. Input and reconstructed microcalcifications were visually and quantitatively compared. New microcalcifications were simulated using randomly sampled principal components determined from the PCA applied to the input microcalcifications, and their realism was appreciated through visual assessment. Preliminary results have shown that input microcalcifications can be reconstructed with high visual fidelity when using 62 principal components, representing 99.5% variance. For that condition, the average L2 norm and dice coefficient were respectively 10.5 μm and 0.93. Newly generated microcalcifications with 62 principal components were found to be visually similar, while not identical, to input microcalcifications. The proposed PCA model of microcalcification shapes allows to successfully reconstruct input microcalcifications and to generate new visually realistic microcalcifications with various morphologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
临床相关微钙化三维模型的建立
一个真实的三维拟人化微钙化软件模型可以作为一个有用的工具,通过模拟来评估乳房成像应用的性能。我们提出了一种方法,允许模拟具有大形态变异性的视觉逼真的微钙化。采用主成分分析(PCA)对281例显微ct活检微钙化灶的形态进行分析。PCA分析要求每个输入微钙化的形状分量数量相同。因此,使用行进立方体算法将基于体素的微钙化转换为具有相同顶点数的表面网格。使用迭代最近点算法和模拟退火算法对顶点进行配准。为了评估该方法,通过逐步添加主成分来重建输入微钙化。对输入和重建的微钙化进行视觉和定量比较。新的微钙化使用随机抽样的主成分来模拟,这些主成分由应用于输入微钙化的PCA确定,并通过视觉评估来评价它们的真实感。初步结果表明,当使用62个主成分,方差为99.5%时,可以以较高的视觉保真度重建输入的微钙化。在该条件下,平均L2范数和dice系数分别为10.5 μm和0.93。新生成的62个主成分的微钙化在视觉上与输入的微钙化相似,但不完全相同。提出的微钙化形状PCA模型可以成功地重建输入的微钙化,并生成具有各种形态的新的视觉逼真的微钙化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness of a U-net model for different image processing types in segmentation of the mammary gland region Lesion detection in contrast enhanced spectral mammography Correspondence between areas causing recall in breast cancer screening and artificial intelligence findings Lesion detection in digital breast tomosynthesis: method, experiences and results of participating to the DBTex challenge Breast shape estimation and correction in CESM biopsy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1