Yanwei Pang, Tiancai Wang, R. Anwer, F. Khan, Ling Shao
{"title":"Efficient Featurized Image Pyramid Network for Single Shot Detector","authors":"Yanwei Pang, Tiancai Wang, R. Anwer, F. Khan, Ling Shao","doi":"10.1109/CVPR.2019.00751","DOIUrl":null,"url":null,"abstract":"Single-stage object detectors have recently gained popularity due to their combined advantage of high detection accuracy and real-time speed. However, while promising results have been achieved by these detectors on standard-sized objects, their performance on small objects is far from satisfactory. To detect very small/large objects, classical pyramid representation can be exploited, where an image pyramid is used to build a feature pyramid (featurized image pyramid), enabling detection across a range of scales. Existing single-stage detectors avoid such a featurized image pyramid representation due to its memory and time complexity. In this paper, we introduce a light-weight architecture to efficiently produce featurized image pyramid in a single-stage detection framework. The resulting multi-scale features are then injected into the prediction layers of the detector using an attention module. The performance of our detector is validated on two benchmarks: PASCAL VOC and MS COCO. For a 300$\\times$300 input, our detector operates at 111 frames per second (FPS) on a Titan X GPU, providing state-of-the-art detection accuracy on PASCAL VOC 2007 testset. On the MS COCO testset, our detector achieves state-of-the-art results surpassing all existing single-stage methods in the case of single-scale inference.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"48 1","pages":"7328-7336"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85
Abstract
Single-stage object detectors have recently gained popularity due to their combined advantage of high detection accuracy and real-time speed. However, while promising results have been achieved by these detectors on standard-sized objects, their performance on small objects is far from satisfactory. To detect very small/large objects, classical pyramid representation can be exploited, where an image pyramid is used to build a feature pyramid (featurized image pyramid), enabling detection across a range of scales. Existing single-stage detectors avoid such a featurized image pyramid representation due to its memory and time complexity. In this paper, we introduce a light-weight architecture to efficiently produce featurized image pyramid in a single-stage detection framework. The resulting multi-scale features are then injected into the prediction layers of the detector using an attention module. The performance of our detector is validated on two benchmarks: PASCAL VOC and MS COCO. For a 300$\times$300 input, our detector operates at 111 frames per second (FPS) on a Titan X GPU, providing state-of-the-art detection accuracy on PASCAL VOC 2007 testset. On the MS COCO testset, our detector achieves state-of-the-art results surpassing all existing single-stage methods in the case of single-scale inference.