A Deep Learning Framework for Malware Classification

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Digital Crime and Forensics Pub Date : 2020-01-01 DOI:10.4018/ijdcf.2020010105
Mahmoud Kalash, Mrigank Rochan, N. Mohammed, Neil D. B. Bruce, Yang Wang, Farkhund Iqbal
{"title":"A Deep Learning Framework for Malware Classification","authors":"Mahmoud Kalash, Mrigank Rochan, N. Mohammed, Neil D. B. Bruce, Yang Wang, Farkhund Iqbal","doi":"10.4018/ijdcf.2020010105","DOIUrl":null,"url":null,"abstract":"In this article, the authors propose a deep learning framework for malware classification. There has been a huge increase in the volume of malware in recent years which poses serious security threats to financial institutions, businesses, and individuals. In order to combat the proliferation of malware, new strategies are essential to quickly identify and classify malware samples. Nowadays, machine learning approaches are becoming popular for malware classification. However, most of these approaches are based on shallow learning algorithms (e.g. SVM). Recently, convolutional neural networks (CNNs), a deep learning approach, have shown superior performance compared to traditional learning algorithms, especially in tasks such as image classification. Inspired by this, the authors propose a CNN-based architecture to classify malware samples. They convert malware binaries to grayscale images and subsequently train a CNN for classification. Experiments on two challenging malware classification datasets, namely Malimg and Microsoft, demonstrate that their method outperforms competing state-of-the-art algorithms.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":"12 1","pages":"90-108"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdcf.2020010105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 4

Abstract

In this article, the authors propose a deep learning framework for malware classification. There has been a huge increase in the volume of malware in recent years which poses serious security threats to financial institutions, businesses, and individuals. In order to combat the proliferation of malware, new strategies are essential to quickly identify and classify malware samples. Nowadays, machine learning approaches are becoming popular for malware classification. However, most of these approaches are based on shallow learning algorithms (e.g. SVM). Recently, convolutional neural networks (CNNs), a deep learning approach, have shown superior performance compared to traditional learning algorithms, especially in tasks such as image classification. Inspired by this, the authors propose a CNN-based architecture to classify malware samples. They convert malware binaries to grayscale images and subsequently train a CNN for classification. Experiments on two challenging malware classification datasets, namely Malimg and Microsoft, demonstrate that their method outperforms competing state-of-the-art algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
恶意软件分类的深度学习框架
在本文中,作者提出了一个用于恶意软件分类的深度学习框架。近年来,恶意软件的数量急剧增加,对金融机构、企业和个人构成了严重的安全威胁。为了对抗恶意软件的扩散,必须采用新的策略来快速识别和分类恶意软件样本。如今,机器学习方法在恶意软件分类中越来越流行。然而,这些方法大多是基于浅学习算法(例如SVM)。最近,卷积神经网络(cnn)作为一种深度学习方法,与传统的学习算法相比,表现出了优越的性能,特别是在图像分类等任务中。受此启发,作者提出了一种基于cnn的恶意软件样本分类架构。他们将恶意软件二进制文件转换为灰度图像,然后训练CNN进行分类。在两个具有挑战性的恶意软件分类数据集(即Malimg和Microsoft)上的实验表明,他们的方法优于竞争最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
期刊最新文献
Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning UAV Edge Caching Content Recommendation Algorithm Based on Graph Neural Network Task Offloading in Cloud-Edge Environments MD-S3C3 A Crime Scene Reconstruction for Digital Forensic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1