{"title":"Fuzzy H∞ filtering for nonlinear 2D systems in the Roesser model","authors":"Khalid Badie, M. Alfidi, Z. Chalh","doi":"10.1504/ijmic.2019.10026100","DOIUrl":null,"url":null,"abstract":"This study focuses on the H∞ filtering problem for two-dimensional (2D) discrete Takagi-Sugeno (T-S) fuzzy systems in the Roesser model. The objective is to design a stable filter guaranteeing the asymptotic stability and a prescribed H∞ performance of the filtering error system. By using a new structure of the fuzzy Lyapunov function, and some analysis techniques, the stability and a prescribed H∞ performance index are guaranteed for the overall filtering-error system, such that the coupling between the Lyapunov matrix and the system matrices is removed. In addition, sufficient conditions for the existence of such a filter are established in term of linear matrix inequalities (LMIs). When these LMIs are feasible, the explicit expression of the desired filter can be characterised. An illustrative example is presented to demonstrate the effectiveness of the developed results.","PeriodicalId":46456,"journal":{"name":"International Journal of Modelling Identification and Control","volume":"28 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modelling Identification and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmic.2019.10026100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the H∞ filtering problem for two-dimensional (2D) discrete Takagi-Sugeno (T-S) fuzzy systems in the Roesser model. The objective is to design a stable filter guaranteeing the asymptotic stability and a prescribed H∞ performance of the filtering error system. By using a new structure of the fuzzy Lyapunov function, and some analysis techniques, the stability and a prescribed H∞ performance index are guaranteed for the overall filtering-error system, such that the coupling between the Lyapunov matrix and the system matrices is removed. In addition, sufficient conditions for the existence of such a filter are established in term of linear matrix inequalities (LMIs). When these LMIs are feasible, the explicit expression of the desired filter can be characterised. An illustrative example is presented to demonstrate the effectiveness of the developed results.
期刊介绍:
Most of the research and experiments in the fields of science, engineering, and social studies have spent significant efforts to find rules from various complicated phenomena by observations, recorded data, logic derivations, and so on. The rules are normally summarised as concise and quantitative expressions or “models". “Identification" provides mechanisms to establish the models and “control" provides mechanisms to improve the system (represented by its model) performance. IJMIC is set up to reflect the relevant generic studies in this area.