A Copyright Authentication Method Balancing Watermark Robustness and Data Distortion

IF 2 3区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Supported Cooperative Work-The Journal of Collaborative Computing Pub Date : 2023-05-24 DOI:10.1109/CSCWD57460.2023.10152729
Chundong Wang, Yue Li
{"title":"A Copyright Authentication Method Balancing Watermark Robustness and Data Distortion","authors":"Chundong Wang, Yue Li","doi":"10.1109/CSCWD57460.2023.10152729","DOIUrl":null,"url":null,"abstract":"Database watermarking plays an irreplaceable role in copyright authentication and data integrity protection, but the robustness of the watermark and the resulting data distortion are a pair of contradictory objects that cannot be ignored. To solve this problem, a reversible database watermarking method, named IGADEW, is proposed to balance the relationship between them. The biggest difference from previous research is that IGADEW synthesizes the optimization objects and obtain various parameters through genetic algorithm (GA). Second, the fitness function considers the weights of robustness and distortion, aiming to find the optimal balance between the two. IGADEW uses the Hash-based Message Authentication Code (HMAC) algorithm to encrypt the experimental parameters and uses the primary key hash algorithm for data grouping, both to ensure robustness. And the data distortion is limited with the help of threshold constraints. Finally, experiments using the UCI dataset demonstrate the effectiveness of IGADEW. Experimental results show that, compared with existing methods, IGADEW is more robust against common attacks, with lower data distortion.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"44 1","pages":"1178-1183"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152729","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Database watermarking plays an irreplaceable role in copyright authentication and data integrity protection, but the robustness of the watermark and the resulting data distortion are a pair of contradictory objects that cannot be ignored. To solve this problem, a reversible database watermarking method, named IGADEW, is proposed to balance the relationship between them. The biggest difference from previous research is that IGADEW synthesizes the optimization objects and obtain various parameters through genetic algorithm (GA). Second, the fitness function considers the weights of robustness and distortion, aiming to find the optimal balance between the two. IGADEW uses the Hash-based Message Authentication Code (HMAC) algorithm to encrypt the experimental parameters and uses the primary key hash algorithm for data grouping, both to ensure robustness. And the data distortion is limited with the help of threshold constraints. Finally, experiments using the UCI dataset demonstrate the effectiveness of IGADEW. Experimental results show that, compared with existing methods, IGADEW is more robust against common attacks, with lower data distortion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种平衡水印鲁棒性和数据失真的版权认证方法
数据库水印在版权认证和数据完整性保护方面具有不可替代的作用,但水印的鲁棒性和由此产生的数据失真是一对不可忽视的矛盾对象。为了解决这一问题,提出了一种可逆的数据库水印方法IGADEW来平衡两者之间的关系。与以往研究最大的不同之处是,IGADEW通过遗传算法(genetic algorithm, GA)综合优化对象并获取各种参数。其次,适应度函数考虑鲁棒性和失真的权重,旨在找到两者之间的最优平衡点。IGADEW采用基于哈希的消息验证码(HMAC)算法对实验参数进行加密,采用主密钥哈希算法对数据分组,保证了鲁棒性。并且利用阈值约束限制了数据失真。最后,基于UCI数据集的实验验证了IGADEW的有效性。实验结果表明,与现有方法相比,IGADEW对常见攻击具有更强的鲁棒性,并且具有更低的数据失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Supported Cooperative Work-The Journal of Collaborative Computing
Computer Supported Cooperative Work-The Journal of Collaborative Computing COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.40
自引率
4.20%
发文量
31
审稿时长
>12 weeks
期刊介绍: Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW. The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas. The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.
期刊最新文献
Text-based Patient – Doctor Discourse Online And Patients’ Experiences of Empathy Agency, Power and Confrontation: the Role for Socially Engaged Art in CSCW with Rurban Communities in Support of Inclusion Data as Relation: Ontological Trouble in the Data-Driven Public Administration The Avatar Facial Expression Reenactment Method in the Metaverse based on Overall-Local Optical-Flow Estimation and Illumination Difference Investigating Author Research Relatedness through Crowdsourcing: A Replication Study on MTurk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1