Data Quality and Explainable AI

L. Bertossi, Floris Geerts
{"title":"Data Quality and Explainable AI","authors":"L. Bertossi, Floris Geerts","doi":"10.1145/3386687","DOIUrl":null,"url":null,"abstract":"In this work, we provide some insights and develop some ideas, with few technical details, about the role of explanations in Data Quality in the context of data-based machine learning models (ML). In this direction, there are, as expected, roles for causality, and explainable artificial intelligence. The latter area not only sheds light on the models, but also on the data that support model construction. There is also room for defining, identifying, and explaining errors in data, in particular, in ML, and also for suggesting repair actions. More generally, explanations can be used as a basis for defining dirty data in the context of ML, and measuring or quantifying them. We think dirtiness as relative to the ML task at hand, e.g., classification.","PeriodicalId":15582,"journal":{"name":"Journal of Data and Information Quality (JDIQ)","volume":"2 1","pages":"1 - 9"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Data and Information Quality (JDIQ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this work, we provide some insights and develop some ideas, with few technical details, about the role of explanations in Data Quality in the context of data-based machine learning models (ML). In this direction, there are, as expected, roles for causality, and explainable artificial intelligence. The latter area not only sheds light on the models, but also on the data that support model construction. There is also room for defining, identifying, and explaining errors in data, in particular, in ML, and also for suggesting repair actions. More generally, explanations can be used as a basis for defining dirty data in the context of ML, and measuring or quantifying them. We think dirtiness as relative to the ML task at hand, e.g., classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据质量和可解释的人工智能
在这项工作中,我们提供了一些见解,并发展了一些想法,在基于数据的机器学习模型(ML)的背景下,解释在数据质量中的作用,技术细节很少。在这个方向上,正如预期的那样,存在因果关系和可解释的人工智能。后一个领域不仅揭示了模型,而且还揭示了支持模型构建的数据。还有定义、识别和解释数据中的错误的空间,特别是在ML中,也有建议修复操作的空间。更一般地说,解释可以作为在ML上下文中定义脏数据并测量或量化它们的基础。我们认为脏与手头的机器学习任务有关,例如分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Special Issue on Data Transparency—Data Quality, Annotation, and Provenance Challenge Paper: The Vision for Time Profiled Temporal Association Mining Editorial: Special Issue on Quality Assessment and Management in Big Data—Part I Developing a Global Data Breach Database and the Challenges Encountered Knowledge Transfer for Entity Resolution with Siamese Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1