{"title":"Unsupervised Graph Neural Network with Self-Expressive Attention for Community Detection","authors":"Xu Sun, Weiyu Zhang, Xinchao Guo, Wenpeng Lu","doi":"10.1109/CSCWD57460.2023.10152715","DOIUrl":null,"url":null,"abstract":"Community detection is an important task in graph analysis, and it is of great significance in reality. Recently, unsupervised learning has been widely used in community detection tasks. However, only a few community detection models combine unsupervised learning with graph neural networks (GNNs). To this end, in this paper, we combine GNNs with unsupervised learning to propose a new model, Unsupervised graph neural network with Self-expressive attention for Community detection (USCom). We first use the graph attention encoder to generate node embeddings. Then we apply the self-expressive principle to optimize the node embeddings to make them more suitable for community detection tasks. Finally, we utilize a four-layer perceptron for community detection. The experimental results show that the model proposed in this paper outperforms the comparison baselines on community detection tasks.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"31 1","pages":"1890-1895"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152715","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Community detection is an important task in graph analysis, and it is of great significance in reality. Recently, unsupervised learning has been widely used in community detection tasks. However, only a few community detection models combine unsupervised learning with graph neural networks (GNNs). To this end, in this paper, we combine GNNs with unsupervised learning to propose a new model, Unsupervised graph neural network with Self-expressive attention for Community detection (USCom). We first use the graph attention encoder to generate node embeddings. Then we apply the self-expressive principle to optimize the node embeddings to make them more suitable for community detection tasks. Finally, we utilize a four-layer perceptron for community detection. The experimental results show that the model proposed in this paper outperforms the comparison baselines on community detection tasks.
期刊介绍:
Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW.
The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas.
The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.