Xiaojia Wang*, Victor Ho, Rachel A. Segalman, David G. Cahill*
{"title":"Thermal Conductivity of High-Modulus Polymer Fibers","authors":"Xiaojia Wang*, Victor Ho, Rachel A. Segalman, David G. Cahill*","doi":"10.1021/ma400612y","DOIUrl":null,"url":null,"abstract":"<p >Polymers have many desirable properties for engineering systems–e.g., low mass density, chemical stability, and high strength-to-mass ratio–but applications of polymers in situations where heat transfer is critical are often limited by low thermal conductivity. Here, we leverage the enormous research and development efforts that have been invested in the production of high-modulus polymer fibers to advance understanding of the mechanisms for thermal transport in this class of materials. Time-domain thermoreflectance (TDTR) enables direct measurements of the axial thermal conductivity of a single polymer fiber over a wide temperature range, 80 < <i>T</i> < 600 K. Relaxation of thermoelastic stress in the Al film transducer has to be taken into account in the analysis of the TDTR data when the laser spot size is small because the radial modulus of the fiber is small. This stress relaxation is controlled by the velocity of the zero-order symmetric Lamb mode of a thin Al plate. We find similarly high thermal conductivities of Λ ≈ 20 W m<sup>–1</sup> K<sup>–1</sup> in crystalline polyethylene and liquid crystalline poly(<i>p</i>-phenylene benzobisoxazole). For both fiber types, Λ(<i>T</i>) ∝ 1/<i>T</i> near room temperature, suggesting an intrinsic limit to the thermal conductivity governed by anharmonicity, not structural disorder. Because of the high degree of elastic anisotropy, longitudinal acoustic phonons with group velocities directed along fiber axis are likely to be the dominate carriers of heat.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"46 12","pages":"4937–4943"},"PeriodicalIF":5.1000,"publicationDate":"2013-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/ma400612y","citationCount":"216","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/ma400612y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 216
Abstract
Polymers have many desirable properties for engineering systems–e.g., low mass density, chemical stability, and high strength-to-mass ratio–but applications of polymers in situations where heat transfer is critical are often limited by low thermal conductivity. Here, we leverage the enormous research and development efforts that have been invested in the production of high-modulus polymer fibers to advance understanding of the mechanisms for thermal transport in this class of materials. Time-domain thermoreflectance (TDTR) enables direct measurements of the axial thermal conductivity of a single polymer fiber over a wide temperature range, 80 < T < 600 K. Relaxation of thermoelastic stress in the Al film transducer has to be taken into account in the analysis of the TDTR data when the laser spot size is small because the radial modulus of the fiber is small. This stress relaxation is controlled by the velocity of the zero-order symmetric Lamb mode of a thin Al plate. We find similarly high thermal conductivities of Λ ≈ 20 W m–1 K–1 in crystalline polyethylene and liquid crystalline poly(p-phenylene benzobisoxazole). For both fiber types, Λ(T) ∝ 1/T near room temperature, suggesting an intrinsic limit to the thermal conductivity governed by anharmonicity, not structural disorder. Because of the high degree of elastic anisotropy, longitudinal acoustic phonons with group velocities directed along fiber axis are likely to be the dominate carriers of heat.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.