A [1 + 2] cycloaddition instead of usual [2 + 3] cycloaddition between the B12N12 cluster and methyl azide: Potential energy surface calculations and Born–Oppenheimer molecular dynamics simulations
{"title":"A [1 + 2] cycloaddition instead of usual [2 + 3] cycloaddition between the B12N12 cluster and methyl azide: Potential energy surface calculations and Born–Oppenheimer molecular dynamics simulations","authors":"P. Pakravan, Seyyed Amir Siadati","doi":"10.1177/1468678319900581","DOIUrl":null,"url":null,"abstract":"We have examined here the possibility of functionalization of the B12N12 cluster by methyl azide by means of a [2 + 3] cycloaddition reaction in analogy with the spontaneous functionalization of C20 fullerene using the same reaction. To achieve more reliable data, all possible interactions at different positions and orientations were considered by reaction channel study and potential energy surface calculations. Also, Born–Oppenheimer molecular dynamics simulations were used to find probable species which could emerge during the reactions.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/1468678319900581","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We have examined here the possibility of functionalization of the B12N12 cluster by methyl azide by means of a [2 + 3] cycloaddition reaction in analogy with the spontaneous functionalization of C20 fullerene using the same reaction. To achieve more reliable data, all possible interactions at different positions and orientations were considered by reaction channel study and potential energy surface calculations. Also, Born–Oppenheimer molecular dynamics simulations were used to find probable species which could emerge during the reactions.