Convexity-edge-preserving Signal Recovery with Linearly Involved Generalized Minimax Concave Penalty Function

Jiro Abe, M. Yamagishi, I. Yamada
{"title":"Convexity-edge-preserving Signal Recovery with Linearly Involved Generalized Minimax Concave Penalty Function","authors":"Jiro Abe, M. Yamagishi, I. Yamada","doi":"10.1109/ICASSP.2019.8682318","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new linearly involved convexity-preserving model for signal recovery by extending the idea in the generalized minimax concave (GMC) penalty [Se-lesnick’ 17]. The proposed model can use nonconvex penalties but maintain the overall convexity and is applicable to much more general scenarios of signal recovery than the original GMC model. We also propose a new iterative algorithm which has theoretical guarantee of convergence to a global minimizer of the proposed model. A numerical experiment for noise suppression shows excellent edge-preserving performance of the proposed smoother in comparison with the standard convex TV smoother.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"5 1","pages":"4918-4922"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we propose a new linearly involved convexity-preserving model for signal recovery by extending the idea in the generalized minimax concave (GMC) penalty [Se-lesnick’ 17]. The proposed model can use nonconvex penalties but maintain the overall convexity and is applicable to much more general scenarios of signal recovery than the original GMC model. We also propose a new iterative algorithm which has theoretical guarantee of convergence to a global minimizer of the proposed model. A numerical experiment for noise suppression shows excellent edge-preserving performance of the proposed smoother in comparison with the standard convex TV smoother.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性相关广义极大极小凹惩罚函数的保凸边信号恢复
在本文中,我们通过扩展广义极小极大凹(GMC)惩罚的思想,提出了一种新的用于信号恢复的线性涉及的凸保持模型[Se-lesnick ' 17]。该模型可以使用非凸惩罚,但保持整体凸性,并且比原始GMC模型适用于更一般的信号恢复场景。我们还提出了一种新的迭代算法,该算法在理论上保证了该模型收敛到全局最小值。噪声抑制的数值实验表明,与标准凸电视平滑器相比,该平滑器具有良好的边缘保持性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1