Object segmentation under varying illumination: Stochastic background model considering spatial locality

T. Tanaka, Atsushi Shimada, Daisaku Arita, R. Taniguchi
{"title":"Object segmentation under varying illumination: Stochastic background model considering spatial locality","authors":"T. Tanaka, Atsushi Shimada, Daisaku Arita, R. Taniguchi","doi":"10.2201/NIIPI.2010.7.4","DOIUrl":null,"url":null,"abstract":"We propose a new method for background modeling. Our method is based on the two complementary approaches. One uses the probability density function (PDF) to approximate background model. The PDF is estimated non-parametrically by using Parzen density estimation. Then, foreground object is detected based on the estimated PDF. The method is based on the evaluation of the local texture at pixel-level resolution which reduces the effects of variations in lighting. Fusing those approachs realizes robust object detection under varying illumination. Several experiments show the effectiveness of our approach.","PeriodicalId":91638,"journal":{"name":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","volume":"13 1","pages":"21-31"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2201/NIIPI.2010.7.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new method for background modeling. Our method is based on the two complementary approaches. One uses the probability density function (PDF) to approximate background model. The PDF is estimated non-parametrically by using Parzen density estimation. Then, foreground object is detected based on the estimated PDF. The method is based on the evaluation of the local texture at pixel-level resolution which reduces the effects of variations in lighting. Fusing those approachs realizes robust object detection under varying illumination. Several experiments show the effectiveness of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变光照下的目标分割:考虑空间局部性的随机背景模型
提出了一种新的背景建模方法。我们的方法是基于两种互补的方法。一种是利用概率密度函数(PDF)近似背景模型。利用Parzen密度估计方法对PDF进行非参数估计。然后,基于估计的PDF检测前景目标。该方法基于像素级分辨率的局部纹理评估,减少了光照变化的影响。融合这些方法可以实现变光照条件下的鲁棒目标检测。几个实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A convolutional neural network based approach towards real-time hard hat detection Report on the analyses and the applications of a large-scale news video archive: NII TV-RECS Large-scale cross-media analysis and mining from socially curated contents Scalable Approaches for Content -based Video Retrieval 湘南会議 The future of multimedia analysis and mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1