{"title":"Social networks of Wikipedia","authors":"P. Massa","doi":"10.1145/1995966.1995996","DOIUrl":null,"url":null,"abstract":"Wikipedia, the free online encyclopedia anyone can edit, is a live social experiment: millions of individuals volunteer their knowledge and time to collective create it. It is hence interesting trying to understand how they do it. While most of the scholar attention focused on article pages, a less investigated share of activities happen on user talk pages, Wikipedia pages where a message can be left for the specific user. This public conversations can be studied from a Social Network Analysis perspective in order to highlight the structure of the \"talk\" network. In this paper we focus on this preliminary extraction step by proposing different algorithms. We then empirically validate the differences in the networks they generate on the Venetian Wikipedia with the real network of conversations extracted manually by coding every message left on all user talk pages. The comparisons show that both the algorithms and the manual process contain inaccuracies that are intrinsic in the freedom and unpredictability of Wikipedia syntax and practices. Nevertheless, a precise description of the involved issues allows to make informed decisions and to base empirical findings on reproducible evidence. Our goal is to lay the foundation for a solid computational sociology of wikis. For this reason we release the scripts encoding our algorithms as open source and also some datasets extracted out of Wikipedia conversations, in order to let other researchers replicate and improve our initial effort.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"7 1","pages":"221-230"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1995966.1995996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Wikipedia, the free online encyclopedia anyone can edit, is a live social experiment: millions of individuals volunteer their knowledge and time to collective create it. It is hence interesting trying to understand how they do it. While most of the scholar attention focused on article pages, a less investigated share of activities happen on user talk pages, Wikipedia pages where a message can be left for the specific user. This public conversations can be studied from a Social Network Analysis perspective in order to highlight the structure of the "talk" network. In this paper we focus on this preliminary extraction step by proposing different algorithms. We then empirically validate the differences in the networks they generate on the Venetian Wikipedia with the real network of conversations extracted manually by coding every message left on all user talk pages. The comparisons show that both the algorithms and the manual process contain inaccuracies that are intrinsic in the freedom and unpredictability of Wikipedia syntax and practices. Nevertheless, a precise description of the involved issues allows to make informed decisions and to base empirical findings on reproducible evidence. Our goal is to lay the foundation for a solid computational sociology of wikis. For this reason we release the scripts encoding our algorithms as open source and also some datasets extracted out of Wikipedia conversations, in order to let other researchers replicate and improve our initial effort.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
维基百科的社交网络
任何人都可以编辑的免费在线百科全书维基百科(Wikipedia)是一个活生生的社会实验:数百万人自愿献出自己的知识和时间,共同创造它。因此,试图理解他们是如何做到这一点是很有趣的。虽然大多数学者的注意力都集中在文章页面上,但对用户讨论页面的活动调查较少,维基百科页面可以为特定用户留下消息。这种公共对话可以从社会网络分析的角度来研究,以突出“谈话”网络的结构。在本文中,我们通过提出不同的算法来关注这个初步的提取步骤。然后,我们通过经验验证他们在威尼斯维基百科上生成的网络与通过对所有用户讨论页上留下的每条消息进行编码手动提取的真实对话网络之间的差异。比较表明,算法和人工过程都包含不准确性,这是维基百科语法和实践的自由和不可预测性所固有的。然而,对所涉及问题的精确描述可以做出明智的决定,并将经验发现建立在可重复证据的基础上。我们的目标是为wiki的计算社会学打下坚实的基础。出于这个原因,我们将编码算法的脚本和从维基百科对话中提取的一些数据集作为开源发布,以便让其他研究人员复制和改进我们最初的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HT '22: 33rd ACM Conference on Hypertext and Social Media, Barcelona, Spain, 28 June 2022- 1 July 2022 HT '21: 32nd ACM Conference on Hypertext and Social Media, Virtual Event, Ireland, 30 August 2021 - 2 September 2021 HT '20: 31st ACM Conference on Hypertext and Social Media, Virtual Event, USA, July 13-15, 2020 Detecting Changes in Suicide Content Manifested in Social Media Following Celebrity Suicides. QualityRank: assessing quality of wikipedia articles by mutually evaluating editors and texts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1