Adsorptive Desulfurization of Model Gasoline by Using Different Zn Sources Exchanged NaY Zeolites

Jingwei Rui, Fei Liu, Rijie Wang, Yanfei Lu, Xiaoxia Yang
{"title":"Adsorptive Desulfurization of Model Gasoline by Using Different Zn Sources Exchanged NaY Zeolites","authors":"Jingwei Rui, Fei Liu, Rijie Wang, Yanfei Lu, Xiaoxia Yang","doi":"10.3390/molecules22020305","DOIUrl":null,"url":null,"abstract":"A series of Zn-modified NaY zeolites were prepared by the liquid-phase ion-exchange method with different Zn sources, including Zn(NO3)2, Zn(Ac)2 and ZnSO4. The samples were tested as adsorbents for removing an organic sulfur compound from a model gasoline fuel containing 1000 ppmw sulfur. Zn(Ac)2-Y exhibited the best performance for the desulfurization of gasoline at ambient conditions. Combined with the adsorbents’ characterization results, the higher adsorption capacity of Zn(Ac)2-Y is associated with a higher ion-exchange degree. Further, the results demonstrated that the addition of 5 wt % toluene or 1-hexene to the diluted thiophene (TP) solution in cyclohexane caused a large decrease in the removal of TP from the model gasoline fuel. This provides evidence about the competition through the π-complexation between TP and toluene for adsorption on the active sites. The acid-catalyzed alkylation by 1-hexene of TP and the generated complex mixture of bulky alkylthiophenes would adsorb on the surface active sites of the adsorbent and block the pores. The regenerated Zn(Ac)2-Y adsorbent afforded 84.42% and 66.10% of the initial adsorption capacity after the first two regeneration cycles.","PeriodicalId":19033,"journal":{"name":"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/molecules22020305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

A series of Zn-modified NaY zeolites were prepared by the liquid-phase ion-exchange method with different Zn sources, including Zn(NO3)2, Zn(Ac)2 and ZnSO4. The samples were tested as adsorbents for removing an organic sulfur compound from a model gasoline fuel containing 1000 ppmw sulfur. Zn(Ac)2-Y exhibited the best performance for the desulfurization of gasoline at ambient conditions. Combined with the adsorbents’ characterization results, the higher adsorption capacity of Zn(Ac)2-Y is associated with a higher ion-exchange degree. Further, the results demonstrated that the addition of 5 wt % toluene or 1-hexene to the diluted thiophene (TP) solution in cyclohexane caused a large decrease in the removal of TP from the model gasoline fuel. This provides evidence about the competition through the π-complexation between TP and toluene for adsorption on the active sites. The acid-catalyzed alkylation by 1-hexene of TP and the generated complex mixture of bulky alkylthiophenes would adsorb on the surface active sites of the adsorbent and block the pores. The regenerated Zn(Ac)2-Y adsorbent afforded 84.42% and 66.10% of the initial adsorption capacity after the first two regeneration cycles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同锌源交换NaY分子筛对模型汽油吸附脱硫的影响
以Zn(NO3)2、Zn(Ac)2和ZnSO4为锌源,采用液相离子交换法制备了一系列Zn修饰的NaY分子筛。测试了样品作为吸附剂从含硫1000 ppmw的模型汽油燃料中去除有机硫化合物。在常温条件下,Zn(Ac)2-Y对汽油的脱硫效果最好。结合吸附剂的表征结果可知,吸附Zn(Ac)2-Y的容量越大,离子交换度越高。此外,结果表明,在环己烷稀释的噻吩(TP)溶液中加入5 wt %的甲苯或1-己烯,可以大大降低模型汽油燃料中TP的去除率。这为TP和甲苯通过π络合作用在活性位点上的吸附竞争提供了证据。TP的1-己烯酸催化的烷基化反应和生成的体积庞大的烷基噻吩复合混合物会吸附在吸附剂的表面活性位点上并堵塞孔隙。再生后的Zn(Ac)2-Y吸附剂在两次再生后的吸附量分别为初始吸附量的84.42%和66.10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single Laboratory Validation of a Quantitative Core Shell-Based LC Separation for the Evaluation of Silymarin Variability and Associated Antioxidant Activity of Pakistani Ecotypes of Milk Thistle (Silybum Marianum L.) Acknowledgement to Reviewers of Molecules in 2017 One-Bath Pretreatment for Enhanced Color Yield of Ink-Jet Prints Using Reactive Inks Prediction of Antimicrobial and Antioxidant Activities of Mexican Propolis by 1H-NMR Spectroscopy and Chemometrics Data Analysis Photophysics and Photochemistry of Canonical Nucleobases’ Thioanalogs: From Quantum Mechanical Studies to Time Resolved Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1