{"title":"A critical analysis on the conception of \"Pre-existent gene expression programs\" for cell differentiation and development","authors":"Wilhelm Hansberg","doi":"10.1016/j.diff.2022.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>A pre-existent gene expression program at the basis of cell differentiation and development is often assumed in the current scientific literature. Historically this conception is traced to the nineteen sixties of the last century, when various influential papers and scientific personalities imprinted their view drawing inspiration from informatics. The accepted model is that in the presence of certain external and/or internal signals, a cell initiates a pre-determined program of gene expression by which it becomes differentiated. Authors generally do not question the evidence for the existence of such a program. Here I review different aspects and consequences of this model to conclude that it is completely at odds with the literature of the last decades, which has given us a splendid view of the dynamics of the living cell as an auto-organizing complex unit that is far away from thermodynamical equilibrium. In this view there is no place for programs.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"125 ","pages":"Pages 1-8"},"PeriodicalIF":2.6000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301468122000147/pdfft?md5=fc0f13fbbf14b74b167b69f53365e121&pid=1-s2.0-S0301468122000147-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468122000147","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A pre-existent gene expression program at the basis of cell differentiation and development is often assumed in the current scientific literature. Historically this conception is traced to the nineteen sixties of the last century, when various influential papers and scientific personalities imprinted their view drawing inspiration from informatics. The accepted model is that in the presence of certain external and/or internal signals, a cell initiates a pre-determined program of gene expression by which it becomes differentiated. Authors generally do not question the evidence for the existence of such a program. Here I review different aspects and consequences of this model to conclude that it is completely at odds with the literature of the last decades, which has given us a splendid view of the dynamics of the living cell as an auto-organizing complex unit that is far away from thermodynamical equilibrium. In this view there is no place for programs.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.