Pull-out strength between Nano-SiO2 contained light-weightself-consolidating concrete and GFRP and steel bars

IF 2.9 4区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers and Concrete Pub Date : 2021-06-01 DOI:10.12989/CAC.2021.27.6.563
Hamed Arjomandi, Ali Foroghi Asl
{"title":"Pull-out strength between Nano-SiO2 contained light-weightself-consolidating concrete and GFRP and steel bars","authors":"Hamed Arjomandi, Ali Foroghi Asl","doi":"10.12989/CAC.2021.27.6.563","DOIUrl":null,"url":null,"abstract":"In this study, the effect of SiO2 nanoparticles on the bonding behavior of steel and glass fiber reinforced polymer (GFRP) bar embedded in contained Light-weight Self-Consolidating Concrete (LWSCC) has been studied experimentally and numerically. The measurement of the mechanical properties of LWSCC modified with SiO2 nanoparticles, including compressive and tensile strength, elastic modulus and density were also carried out. Studies are conducted on 7, and 28-day aged LWSCC samples containing 0, 2 and 5% SiO2 nanoparticles with 12 mm and 16 mm diameter GFRP and steel bars. The results show that LWSCC modified with SiO2 nanoparticles increases the bonding strength between concrete and bar. In LWSCC with 2 and 5 wt.% SiO2, the maximum pull-out force of 16 mm diameter steel bar is increased by 48.5% and 54.7%, respectively, compared to the LWSCC without nanoparticle addition. Also, bonding improvement between GFRP bars with a diameter of 16mm and LWSCC having 2 and 5 wt.% SiO2 is 32.3% and 40%, respectively.","PeriodicalId":50625,"journal":{"name":"Computers and Concrete","volume":"39 1","pages":"563"},"PeriodicalIF":2.9000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Concrete","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/CAC.2021.27.6.563","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the effect of SiO2 nanoparticles on the bonding behavior of steel and glass fiber reinforced polymer (GFRP) bar embedded in contained Light-weight Self-Consolidating Concrete (LWSCC) has been studied experimentally and numerically. The measurement of the mechanical properties of LWSCC modified with SiO2 nanoparticles, including compressive and tensile strength, elastic modulus and density were also carried out. Studies are conducted on 7, and 28-day aged LWSCC samples containing 0, 2 and 5% SiO2 nanoparticles with 12 mm and 16 mm diameter GFRP and steel bars. The results show that LWSCC modified with SiO2 nanoparticles increases the bonding strength between concrete and bar. In LWSCC with 2 and 5 wt.% SiO2, the maximum pull-out force of 16 mm diameter steel bar is increased by 48.5% and 54.7%, respectively, compared to the LWSCC without nanoparticle addition. Also, bonding improvement between GFRP bars with a diameter of 16mm and LWSCC having 2 and 5 wt.% SiO2 is 32.3% and 40%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含纳米sio2的轻质自固结混凝土与GFRP和钢筋的抗拉强度
本文研究了SiO2纳米颗粒对轻质自固结混凝土(LWSCC)中钢筋与玻璃纤维增强聚合物(GFRP)粘结性能的影响。测试了SiO2纳米颗粒改性后的轻质轻质混凝土的抗压强度、抗拉强度、弹性模量和密度等力学性能。采用直径为12 mm和16 mm的玻璃钢和钢筋,分别对含有0、2和5% SiO2纳米颗粒的7天和28天龄期LWSCC样品进行了研究。结果表明:经SiO2纳米颗粒改性的低密度轻质混凝土提高了混凝土与钢筋的粘结强度;在SiO2含量为2 wt.%和5 wt.%的轻质轻质混凝土中,16 mm直径钢筋的最大拉拔力比未添加纳米颗粒的轻质轻质混凝土分别提高了48.5%和54.7%。直径为16mm的GFRP筋与SiO2含量为2 wt.%和5 wt.%的LWSCC之间的粘结改善率分别为32.3%和40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers and Concrete
Computers and Concrete 工程技术-材料科学:表征与测试
CiteScore
8.60
自引率
7.30%
发文量
0
审稿时长
13.5 months
期刊介绍: Computers and Concrete is An International Journal that focuses on the computer applications in be considered suitable for publication in the journal. The journal covers the topics related to computational mechanics of concrete and modeling of concrete structures including plasticity fracture mechanics creep thermo-mechanics dynamic effects reliability and safety concepts automated design procedures stochastic mechanics performance under extreme conditions.
期刊最新文献
Numerical investigation on RC T-beams strengthened in the negative moment region using NSM FRP rods at various depth of embedment Forced vibration analysis of a micro sandwich plate with an isotropic/orthotropic cores and polymeric nanocomposite face sheets Influence of non-persistent joint sets on the failure behaviour of concrete under uniaxial compression test Nonlinear vibration behavior of hybrid multi-scale cylindrical panels via semi numerical method Improving the seismic performance of reinforced concrete frames using an innovative metallic-shear damper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1