{"title":"D-Optimal Design Optimization for Esterification of Palm Fatty Acids Distillate with Polyhydric Alcohols for Biolubricants Production","authors":"N. Salih, Majd Ahmed Jumaah, J. Salimon","doi":"10.30492/IJCCE.2021.521586.4481","DOIUrl":null,"url":null,"abstract":"Plant-based biolubricant is crucial to be developed and adopted for many industries. This is due to the presence toxicity risk, climate change, energy security as well green-environmental approach issues. The utilization of palm oil processing industries by-product, palm fatty acid distillate (PFAD-based biolubricants is one way of green environment approach. A synthesis of polyol esters based on PFAD for biolubricants was carried out. The esterification of PFAD with high degree polyhydric alcohols trimethylolpropane (TMP), di-trimethylopropane (di-TMP), pentaerythritol (PE) and di-pentaerythritol (Di-PE) in the presence of sulphuric acid (H2SO4) catalyst have been performed. The optimization of the esterification reaction process was evaluated using D-optimal design based on three reaction parameters; H2SO4 concentration (%) for the catalyst, esterification time (h) and esterification temperature (°C). The chemical structure of the synthesized polyol esters was characterized and confirmed by using FTIR and NMR (1H and 13C) spectroscopies. The results showed that PFAD-based polyesters of PFAD-TMP ester successfully produced in high yields of 93% compared to others. The synthesized PFAD-based polyesters showed good lubrication properties with high viscosity indices in the range of 141-187, pour points (-5 to 5 oC), flash points (230-360 oC), and oxidative stability temperature (188-301 °C), respectively. The ester functional group presence in their chemicals structure of PFAD-based polyesters showed positive impact on the lubrication properties. The study indicated that the PFAD-based polyesters are plausible to be used as industrial biolubricants application.","PeriodicalId":14572,"journal":{"name":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Chemistry & Chemical Engineering-international English Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30492/IJCCE.2021.521586.4481","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Plant-based biolubricant is crucial to be developed and adopted for many industries. This is due to the presence toxicity risk, climate change, energy security as well green-environmental approach issues. The utilization of palm oil processing industries by-product, palm fatty acid distillate (PFAD-based biolubricants is one way of green environment approach. A synthesis of polyol esters based on PFAD for biolubricants was carried out. The esterification of PFAD with high degree polyhydric alcohols trimethylolpropane (TMP), di-trimethylopropane (di-TMP), pentaerythritol (PE) and di-pentaerythritol (Di-PE) in the presence of sulphuric acid (H2SO4) catalyst have been performed. The optimization of the esterification reaction process was evaluated using D-optimal design based on three reaction parameters; H2SO4 concentration (%) for the catalyst, esterification time (h) and esterification temperature (°C). The chemical structure of the synthesized polyol esters was characterized and confirmed by using FTIR and NMR (1H and 13C) spectroscopies. The results showed that PFAD-based polyesters of PFAD-TMP ester successfully produced in high yields of 93% compared to others. The synthesized PFAD-based polyesters showed good lubrication properties with high viscosity indices in the range of 141-187, pour points (-5 to 5 oC), flash points (230-360 oC), and oxidative stability temperature (188-301 °C), respectively. The ester functional group presence in their chemicals structure of PFAD-based polyesters showed positive impact on the lubrication properties. The study indicated that the PFAD-based polyesters are plausible to be used as industrial biolubricants application.
期刊介绍:
The aim of the Iranian Journal of Chemistry and Chemical Engineering is to foster the growth of educational, scientific and Industrial Research activities among chemists and chemical engineers and to provide a medium for mutual communication and relations between Iranian academia and the industry on the one hand, and the world the scientific community on the other.