Performance Enhancement of SMC Based Buck Converter under Variable Conditions by Particle Swarm Optimization Algorithm

S. Vadi, R. Bayindir
{"title":"Performance Enhancement of SMC Based Buck Converter under Variable Conditions by Particle Swarm Optimization Algorithm","authors":"S. Vadi, R. Bayindir","doi":"10.1109/SGRE53517.2022.9774271","DOIUrl":null,"url":null,"abstract":"In case of load change at the output of the converters, the inductor and capacitor sizes in the converters should also change. Otherwise, there will be distortions in the dynamic response of the converter in terms of performance criteria such as settling time, rise time and maximum overshoot amount. This paper presents to improve the control's performances optimization using particle swarm optimization (PSO) of the system consisting of a buck converter based on sliding mode control (SMC) under variable conditions. Thus, a stable control structure has created by calculating the optimal values of the coefficients in the sliding mode control structure with the PSO method. The input source is taken as direct source (DC) source voltage at variable conditions. Buck Converter output voltage has been tested on variable loads. The modeling is done in MATLAB/Simulink software.","PeriodicalId":64562,"journal":{"name":"智能电网与可再生能源(英文)","volume":"122 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能电网与可再生能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/SGRE53517.2022.9774271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In case of load change at the output of the converters, the inductor and capacitor sizes in the converters should also change. Otherwise, there will be distortions in the dynamic response of the converter in terms of performance criteria such as settling time, rise time and maximum overshoot amount. This paper presents to improve the control's performances optimization using particle swarm optimization (PSO) of the system consisting of a buck converter based on sliding mode control (SMC) under variable conditions. Thus, a stable control structure has created by calculating the optimal values of the coefficients in the sliding mode control structure with the PSO method. The input source is taken as direct source (DC) source voltage at variable conditions. Buck Converter output voltage has been tested on variable loads. The modeling is done in MATLAB/Simulink software.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群优化算法的变条件下SMC降压变换器性能增强
如果变流器输出端的负载发生变化,则变流器中的电感和电容器的尺寸也应发生变化。否则,在稳定时间、上升时间和最大超调量等性能指标方面,变换器的动态响应会出现失真。针对变条件下基于滑模控制(SMC)的buck变换器系统,提出了利用粒子群算法(PSO)改进控制性能的优化方法。因此,利用粒子群算法计算滑模控制结构中各系数的最优值,建立了稳定的控制结构。在可变条件下,将输入源作为直流源电压。Buck变换器的输出电压在可变负载下进行了测试。在MATLAB/Simulink软件中进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
307
期刊最新文献
Experimental Investigations of the Effects of Secondary Air Injection on Gaseous Emission Profiles (NOx, NO, NO2, CO) and Hydrocarbons (CxHx) in Cookstoves Using Charcoal from Eucalyptus glandis Microgrid Optimal Scheduling Carbon and Water Footprint Evaluation of 120Wp Rural Household Photovoltaic System: Case Study Performance of the Boost Chopper, Comparative Study between PI Control and Neural Control to Regulate Its Output Voltage An Energy Production System Powered by Solar Heat with Biogas Dry Reforming Reactor and Solid Oxide Fuel Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1