Electrical Resistivity Imaging near Abandoned Steel Oil Wells: Five Case Studies, USA

IF 1 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL Journal of Environmental and Engineering Geophysics Pub Date : 2020-12-01 DOI:10.32389/jeeg20-048
M. Saribudak, D. Rucker, Allan Haas
{"title":"Electrical Resistivity Imaging near Abandoned Steel Oil Wells: Five Case Studies, USA","authors":"M. Saribudak, D. Rucker, Allan Haas","doi":"10.32389/jeeg20-048","DOIUrl":null,"url":null,"abstract":"Abandoned wells may act as conduits for the contamination of groundwater by oil field brines and other pollutants. The steel casings of abandoned wells eventually develop leaks, which if not properly plugged, can allow pollutants to reach freshwater aquifers that supply drinking water. Resistivity surveys were conducted in the vicinity of five abandoned oil wells in order to characterize the near-surface geology and to determine the effects of the steel casings and potential leakage. The arrays consisted of dipole-dipole (DD) and inverse Schlumberger (SLB) arrays. The effects from steel cased wells can manifest as low resistivity anomalies in the vicinity of the casings, depending on proximity of the line to the well, well location along the line, and the specific array used. These features appear as vertical, circular, elliptical, and bell-like anomalies. However, in some instances with the SLB array, the data appear not to be affected by the presence of steel casings. This observation is significant because resistivity surveys utilizing the SLB array can provide reliable information on near-surface geology next to abandoned wells, and horizontal and vertical extension of brine impacted areas due to leaking abandoned oil wells. The DD array, on the other hand, is better at locating potentially hidden abandoned wells but interpreting subsurface structure or contamination with the array is more difficult.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"115 1","pages":"545-556"},"PeriodicalIF":1.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.32389/jeeg20-048","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Abandoned wells may act as conduits for the contamination of groundwater by oil field brines and other pollutants. The steel casings of abandoned wells eventually develop leaks, which if not properly plugged, can allow pollutants to reach freshwater aquifers that supply drinking water. Resistivity surveys were conducted in the vicinity of five abandoned oil wells in order to characterize the near-surface geology and to determine the effects of the steel casings and potential leakage. The arrays consisted of dipole-dipole (DD) and inverse Schlumberger (SLB) arrays. The effects from steel cased wells can manifest as low resistivity anomalies in the vicinity of the casings, depending on proximity of the line to the well, well location along the line, and the specific array used. These features appear as vertical, circular, elliptical, and bell-like anomalies. However, in some instances with the SLB array, the data appear not to be affected by the presence of steel casings. This observation is significant because resistivity surveys utilizing the SLB array can provide reliable information on near-surface geology next to abandoned wells, and horizontal and vertical extension of brine impacted areas due to leaking abandoned oil wells. The DD array, on the other hand, is better at locating potentially hidden abandoned wells but interpreting subsurface structure or contamination with the array is more difficult.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美国废弃钢油井附近电阻率成像:五个案例研究
废弃井可能成为油田盐水和其他污染物污染地下水的管道。废弃油井的钢套管最终会出现泄漏,如果不及时封堵,污染物可能会进入供应饮用水的淡水含水层。在5口废弃油井附近进行了电阻率测量,以表征近地表地质特征,并确定钢套管和潜在泄漏的影响。该阵列包括偶极-偶极(DD)和逆斯伦贝谢(SLB)阵列。钢套管井的影响可以表现为套管附近的低电阻率异常,这取决于管线与井的接近程度、管线沿线的井位以及所使用的特定阵列。这些特征表现为垂直、圆形、椭圆形和钟状异常。然而,在使用SLB阵列的某些情况下,数据似乎不受钢套管存在的影响。这一观测结果意义重大,因为利用SLB阵列的电阻率测量可以提供废弃井附近近地表地质的可靠信息,以及由于废弃油井泄漏而导致的盐水影响区域的水平和垂直延伸。另一方面,DD阵列可以更好地定位潜在的废弃井,但用该阵列解释地下结构或污染更为困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental and Engineering Geophysics
Journal of Environmental and Engineering Geophysics 地学-地球化学与地球物理
CiteScore
2.70
自引率
0.00%
发文量
13
审稿时长
6 months
期刊介绍: The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.
期刊最新文献
Applications and Analytical Methods of Ground Penetrating Radar for Soil Characterization in a Silvopastoral System Introduction to the Journal of Environmental and Engineering Geophysics Special Issue on the Application of Proximal and Remote Sensing Technologies to Soil Investigations Integrated Agrogeophysical Approach for Investigating Soil Pipes in Agricultural Fields Automated Segmentation Framework for Asphalt Layer Thickness from GPR Data Using a Cascaded k-Means - DBSCAN Algorithm Continuous Automatic Estimation of Volumetric Water Content Profile During Infiltration Using Sparse Multi-Offset GPR Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1