Memory mapped networks: a new deal for distributed shared memories ? the SciFS experience

E. Cecchet
{"title":"Memory mapped networks: a new deal for distributed shared memories ? the SciFS experience","authors":"E. Cecchet","doi":"10.1109/CLUSTR.2002.1137751","DOIUrl":null,"url":null,"abstract":"Distributed Shared Memories (DSM) performance has always suffered from high network latencies and software communication layers with a large overhead. Memory mapped networks such as Scalable Coherent Interface (SCI) allow to reliably access remote memory without involving the operating system. To show how DSM systems can benefit from this technology, we have developed SciFS, a DSM tightly integrated with the operating system, that exploits the high performance and the remote memory access capabilities of SCI. We first show the respective advantages of two communications techniques with SCI: programmed IO (PIO) and remote DMA (RDMA). Then, we describe how to build a scalable page transfer mechanism by mixing PIO and RDMA. Despite the lack of a broadcast mechanism with SCI, we demonstrate that it is possible to build scalable synchronization primitives using PIO. Finally, we evaluate various consistency models with scientific computing applications from the Splash benchmark. We observe that, even if the rough network performance is good, it is not sufficient to obtain acceptable results with applications that require fine grain parallelism. However, we show that memory mapped networks provide an efficient hardware support to implement software DSM systems without requiring complex relaxed consistency models. This way, DSM design can be greatly simplified using this technology.","PeriodicalId":92128,"journal":{"name":"Proceedings. IEEE International Conference on Cluster Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2002.1137751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Distributed Shared Memories (DSM) performance has always suffered from high network latencies and software communication layers with a large overhead. Memory mapped networks such as Scalable Coherent Interface (SCI) allow to reliably access remote memory without involving the operating system. To show how DSM systems can benefit from this technology, we have developed SciFS, a DSM tightly integrated with the operating system, that exploits the high performance and the remote memory access capabilities of SCI. We first show the respective advantages of two communications techniques with SCI: programmed IO (PIO) and remote DMA (RDMA). Then, we describe how to build a scalable page transfer mechanism by mixing PIO and RDMA. Despite the lack of a broadcast mechanism with SCI, we demonstrate that it is possible to build scalable synchronization primitives using PIO. Finally, we evaluate various consistency models with scientific computing applications from the Splash benchmark. We observe that, even if the rough network performance is good, it is not sufficient to obtain acceptable results with applications that require fine grain parallelism. However, we show that memory mapped networks provide an efficient hardware support to implement software DSM systems without requiring complex relaxed consistency models. This way, DSM design can be greatly simplified using this technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内存映射网络:分布式共享内存的新协议?SciFS的体验
分布式共享内存(DSM)性能一直受到高网络延迟和软件通信层的影响,并且开销很大。内存映射网络,如可扩展连贯接口(SCI),允许在不涉及操作系统的情况下可靠地访问远程内存。为了展示DSM系统如何从这项技术中受益,我们开发了SciFS,这是一个与操作系统紧密集成的DSM,利用了SCI的高性能和远程内存访问能力。我们首先展示了SCI两种通信技术的各自优势:编程IO (PIO)和远程DMA (RDMA)。然后,我们描述了如何通过混合PIO和RDMA来构建可扩展的页面传输机制。尽管SCI缺乏广播机制,但我们证明了可以使用PIO构建可扩展的同步原语。最后,我们用来自Splash基准的科学计算应用程序评估了各种一致性模型。我们观察到,即使粗网络性能很好,对于需要细粒度并行性的应用程序,也不足以获得可接受的结果。然而,我们表明,内存映射网络为实现软件DSM系统提供了有效的硬件支持,而不需要复杂的宽松一致性模型。这样,使用该技术可以大大简化DSM设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel processing of spatial batch-queries using xBR+-trees in solid-state drives Predicting the Energy-Consumption of MPI Applications at Scale Using Only a Single Node Parallel and Efficient Sensitivity Analysis of Microscopy Image Segmentation Workflows in Hybrid Systems. FTS 2016 Workshop Keynote Speech Letter from the general chair
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1