Polar Space Based Shape Averaging for Star-shaped Biological Objects

Karina Ruzaeva, K. Nöh, B. Berkels
{"title":"Polar Space Based Shape Averaging for Star-shaped Biological Objects","authors":"Karina Ruzaeva, K. Nöh, B. Berkels","doi":"10.2312/vcbm.20211340","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an averaging method for expert segmentation proposals of microbial organisms, resulting in a smooth, naturally looking segmentation ground truth. The approach exploits a geometrical property of the majority of the organisms – star-shapedness – and is based on contour averaging in polar space. It is robust and computationally efficient, where robustness is due to the absence of tuneable parameters. Moreover, the algorithm preserves the uncertainty (in terms of the standard deviation) of the experts’ opinion, which allows to introduce an uncertainty-aware metric for estimation of the segmentation quality. This metric emphasizes the influence of ground truth regions with low variance. We study the performance of the proposed averaging method on time-lapse microscopy data of Corynebacterium glutamicum and the uncertainty-aware metric on synthetic data. CCS Concepts • Applied computing → Imaging; • Computing methodologies → Image processing;","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"116 1","pages":"13-17"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20211340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose an averaging method for expert segmentation proposals of microbial organisms, resulting in a smooth, naturally looking segmentation ground truth. The approach exploits a geometrical property of the majority of the organisms – star-shapedness – and is based on contour averaging in polar space. It is robust and computationally efficient, where robustness is due to the absence of tuneable parameters. Moreover, the algorithm preserves the uncertainty (in terms of the standard deviation) of the experts’ opinion, which allows to introduce an uncertainty-aware metric for estimation of the segmentation quality. This metric emphasizes the influence of ground truth regions with low variance. We study the performance of the proposed averaging method on time-lapse microscopy data of Corynebacterium glutamicum and the uncertainty-aware metric on synthetic data. CCS Concepts • Applied computing → Imaging; • Computing methodologies → Image processing;
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于极空间的星形生物物体形状平均
在本文中,我们提出了一种对微生物有机体的专家分割建议进行平均的方法,从而得到光滑、自然的分割基础真值。该方法利用了大多数生物的几何特性——星形——并基于极空间的轮廓平均。它具有鲁棒性和计算效率,其中鲁棒性是由于没有可调参数。此外,该算法保留了专家意见的不确定性(就标准差而言),这允许引入不确定性感知度量来估计分割质量。该度量强调低方差的地面真值区域的影响。我们研究了所提出的谷氨酸棒状杆菌延时显微数据的平均方法和合成数据的不确定度感知度量的性能。CCS概念•应用计算→成像;•计算方法→图像处理;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Analytics to Assess Deep Learning Models for Cross-Modal Brain Tumor Segmentation Distance Visualizations for Vascular Structures in Desktop and VR: Overview and Implementation Is there a Tornado in Alex's Blood Flow? A Case Study for Narrative Medical Visualization HistoContours: a Framework for Visual Annotation of Histopathology Whole Slide Images Predicting, Analyzing and Communicating Outcomes of COVID-19 Hospitalizations with Medical Images and Clinical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1