{"title":"Complexity indices for the traveling salesman problem continued","authors":"D. Cvetkovic, Zorica Dražić, V. Kovacevic-Vujcic","doi":"10.2298/YJOR201121014C","DOIUrl":null,"url":null,"abstract":"We consider the symmetric traveling salesman problem (TSP) with instances represented by complete graphs G with distances between cities as edge weights. A complexity index is an invariant of an instance I by which we predict the execution time of an exact TSP algorithm for I. In the paper [5] we have considered some short edge subgraphs of G and defined several new invariants related to their connected components. Extensive computational experiments with instances on 50 vertices with the uniform distribution of integer edge weights in the interval [1,100] show that there exists correlation between the sequences of selected invariants and the sequence of execution times of the well-known TSP Solver Concorde. In this paper we extend these considerations for instances up to 100 vertices.","PeriodicalId":52438,"journal":{"name":"Yugoslav Journal of Operations Research","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yugoslav Journal of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/YJOR201121014C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the symmetric traveling salesman problem (TSP) with instances represented by complete graphs G with distances between cities as edge weights. A complexity index is an invariant of an instance I by which we predict the execution time of an exact TSP algorithm for I. In the paper [5] we have considered some short edge subgraphs of G and defined several new invariants related to their connected components. Extensive computational experiments with instances on 50 vertices with the uniform distribution of integer edge weights in the interval [1,100] show that there exists correlation between the sequences of selected invariants and the sequence of execution times of the well-known TSP Solver Concorde. In this paper we extend these considerations for instances up to 100 vertices.