Incremental Policy Refinement by Recursive Regression and Kinesthetic Guidance

B. Nemec, Mihael Simonič, T. Petrič, A. Ude
{"title":"Incremental Policy Refinement by Recursive Regression and Kinesthetic Guidance","authors":"B. Nemec, Mihael Simonič, T. Petrič, A. Ude","doi":"10.1109/ICAR46387.2019.8981606","DOIUrl":null,"url":null,"abstract":"Fast deployment of robot tasks requires appropriate tools that enable efficient reuse of existing robot control policies. Learning from Demonstration (LfD) is a popular tool for the intuitive generation of robot policies, but the issue of how to address the adaptation of existing policies has not been properly addressed yet. In this work, we propose an incremental LfD framework that efficiently solves the above-mentioned issue. It has been implemented and tested on a number of popular collaborative robots, including Franka Emika Panda, Universal Robot UR10, and KUKA LWR 4.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"8 1","pages":"344-349"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Fast deployment of robot tasks requires appropriate tools that enable efficient reuse of existing robot control policies. Learning from Demonstration (LfD) is a popular tool for the intuitive generation of robot policies, but the issue of how to address the adaptation of existing policies has not been properly addressed yet. In this work, we propose an incremental LfD framework that efficiently solves the above-mentioned issue. It has been implemented and tested on a number of popular collaborative robots, including Franka Emika Panda, Universal Robot UR10, and KUKA LWR 4.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于递归回归和动觉引导的增量策略优化
机器人任务的快速部署需要适当的工具,能够有效地重用现有的机器人控制策略。从演示中学习(LfD)是直观生成机器人政策的流行工具,但如何解决现有政策的适应性问题尚未得到适当解决。在这项工作中,我们提出了一个增量LfD框架,有效地解决了上述问题。它已经在许多流行的协作机器人上实现和测试,包括Franka Emika Panda、Universal Robot UR10和KUKA LWR 4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Domain Randomization Techniques for Transfer Learning Robotito: programming robots from preschool to undergraduate school level A Novel Approach for Parameter Extraction of an NMPC-based Visual Follower Model Automated Conflict Resolution of Lane Change Utilizing Probability Collectives Estimating and Localizing External Forces Applied on Flexible Instruments by Shape Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1